Bioenergy Systems in Canada: Towards Energy Security and Climate Change Solutions

Loading...
Thumbnail Image

Authors

Hacatoglu, Kevork

Date

2008-12-10T14:29:45Z

Type

thesis

Language

eng

Keyword

Energy security , Climate change , Greenhouse gas , Biomass , Bioenergy , Systems analysis , Great Lakes , Synthetic natural gas , Green diesel , Energy policy

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

The energy security and climate change risks of fossil fuel consumption have stimulated interest in developing renewable energy sources. Canada’s vast biomass potential is an attractive local resource but high transportation costs are a barrier to implementation. This study assesses how transformative systems can enable large-scale bioenergy production through integration with existing transportation corridors and fossil fuel infrastructure. Potential bioenergy corridors include the network of natural gas pipelines and the Great Lakes St. Lawrence Seaway (GLSLS). Sustainable lignocellulosic biomass production integrated with traditional food and fibre production was assumed to occur on 196 Mha of land within 100 km of pipelines. Conservative (81 Mt of dry biomass per year) and aggressive (209 Mt) scenarios were investigated for converting biomass to synthetic natural gas (SNG) via gasification, methanation, and upgrading, yielding enough pipeline-quality gas to meet 20% to 60% of Canada’s current needs. A systems analysis approach was used to calculate bioSNG life-cycle emissions of 15 to 18 kgCO2e GJ-1, compared to 68 or 87 for conventional or liquefied natural gas, respectively. Production costs ranged from $16 to $20 GJ-1, which were high compared to regional gas prices ($5 to $10 GJ-1). The biomass potential on 125 Mha of land area within 100 km of the Canadian portion of the GLSLS and railway lines ranged from 36 to 80 Mt(dry) per year, which was enough to displace coal-fired power in Ontario plus produce 1.6 to 11 billion L of green diesel that could offset 14% to 96% of fossil diesel in GLSLS provinces. Life-cycle emissions ranged from 110 to 130 gCO2e kWh-1 for biopower (compared to 1030 for coal) and 20 to 22 kgCO2e GJ-1 for green diesel (compared to 84 for conventional diesel). Cost estimates ranged from $130 MWh-1 for biopower (compared to an average market power price of $54 MWh-1) and $28 to $36 GJ-1 for green diesel (compared to $16 to $24 GJ-1 for diesel). The auxiliary benefits (energy security, climate change, air quality, and rural development) were seen as justification for supportive bioenergy policies.

Description

Thesis (Master, Environmental Studies) -- Queen's University, 2008-12-09 15:24:18.389

Citation

Publisher

License

This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.

Journal

Volume

Issue

PubMed ID

External DOI

ISSN

EISSN