Effect of Foot Shells on Mechanical Properties of Prosthetic Foot Systems
Loading...
Authors
Low, Sydney
Date
Type
thesis
Language
eng
Keyword
Prosthetics , Prosthetic Foot System , Foot Shells , Mechanical Characterization , Mechanical Testing , Biomechanics , Midstance , Stiffness , Deformation , Mechanical Properties
Alternative Title
Abstract
Prosthetic foot systems are typically composed of both structural keel and foot shell components. The interaction between these components is considered by the prosthetic device industry with respect to designing higher performance systems with strategically paired components. However, the influence of foot shells on prosthetic foot system mechanical performance is limited in academic literature.
The overall goal of this study was to inform future prescription guidelines and design practices of prosthetic foot components by quantifying the effects of foot shells on mechanical properties of prosthetic foot systems. A methodology was proposed enabling characterization of midstance properties that was adapted from a protocol used to predict continuous deformation characteristics of prosthetic feet throughout stance. The proposed method was validated against previous results, and successfully detected differences related to foot design during midstance loading. Specifically, increased deformation corresponded to earlier double-keel loading initiation and later transition into single-keel forefoot loading.
The new protocol was implemented to quantify effects of various foot shell designs on predicted deformation and stiffness characteristics of prosthetic foot systems. Observed effects on the system included path-dependent changes to the force-displacement curves, instances of both decreased and increased stiffness up to 73% and 49%, respectively, and up to 13% increased durations of double-keel loading. Varied effects were observed depending on keel and foot shell design, and phase of stance.
In a final study, effects of isolated foot shell design features on mechanical performance of prosthetic foot systems were investigated. Results indicate a complex interaction likely exists between keel and foot shell components, and should therefore be taken into further consideration in the evaluation, design, and prescription of prosthetic foot systems.
Description
Citation
Publisher
License
Queen's University's Thesis/Dissertation Non-Exclusive License for Deposit to QSpace and Library and Archives Canada
ProQuest PhD and Master's Theses International Dissemination Agreement
Intellectual Property Guidelines at Queen's University
Copying and Preserving Your Thesis
This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.
ProQuest PhD and Master's Theses International Dissemination Agreement
Intellectual Property Guidelines at Queen's University
Copying and Preserving Your Thesis
This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.