Predicting Carbon Accumulation in Temperate Forests of Ontario Using a LiDAR-Initialized Growth-and-Yield Model

Loading...
Thumbnail Image

Authors

Marczak, Paulina

Date

Type

thesis

Language

eng

Keyword

carbon accumulation , LiDAR , carbon stock , growth-and-yield model , mixedwood , temperate , FVSOntario

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

Climate warming has led to a need for improved estimates of aboveground carbon accumulation (CA); in Ontario, this is particularly true for uneven-aged, mixedwood temperate forests, where there remains high uncertainty. This study investigated the feasibility of using LiDAR-derived tree lists to initialize a Growth and Yield (G&Y) model at the Petawawa Research Forest (PRF) in eastern Ontario, Canada. We aimed to see if models based on LiDAR-derived estimates of tree attributes provide comparable predictions of aboveground CA in complex temperate forests to those from inventory measurements. Applying a local G&Y model (i.e., FVSOntario), we predicted aboveground carbon stock (CS; tons/ha) and CA (tons/ha/yr) using recurring plot measurements from 2012-2016, FVS1. We then used a suite of statistical predictors derived from LiDAR to predict stem density (SD), stem diameter distribution (SDD), and basal area distribution (BA_dist) using an algorithm. These data, along with measured species abundance, were used to construct tree lists and initialize a second G&Y model (i.e., FVS2). Another G&Y model was tested using LiDAR-initialized tree lists and Forest Resource Inventory (FRI) estimates of species abundance (i.e., FVS3). Models were validated using inventory data at years zero (2012) and four (2016). The inventory-based model predicted equivalent CS at year four compared to validation data at all size-class levels, while LiDAR-based models did not; however, models were statistically dissimilar to validation data for CA. There was no significant difference between LiDAR-based models using inventory and FRI species through a 9-year period at the plot level (p<0.05), although forest type groupings were not always equivalent. We found equivalency of inventory and photo-interpreted models for size classes ≥17 cm. Our results demonstrate the importance of precise tree size information when initializing G&Y models using LiDAR-derived estimates, the possibility of circumventing precise species abundance information when using G&Y models for CA, and that more work is needed on the use of LiDAR to quantify individual tree measurements in G&Y models for accurate predictions of CA. These results provide insight into techniques that can be applied regionally to quantify and forecast CA changes in Ontario, and for more informed carbon mitigation strategies.

Description

Citation

Publisher

License

CC0 1.0 Universal
Queen's University's Thesis/Dissertation Non-Exclusive License for Deposit to QSpace and Library and Archives Canada
ProQuest PhD and Master's Theses International Dissemination Agreement
Intellectual Property Guidelines at Queen's University
Copying and Preserving Your Thesis
This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.

Journal

Volume

Issue

PubMed ID

External DOI

ISSN

EISSN