Initiation of Delayed Hydride Cracking in Zr-2.5Nb Micro Pressure Tubes

Thumbnail Image
Sundaramoorthy, Ravi Kumar
Zr-2.5Nb Alloys , Delayed Hydride Cracking (DHC) , Micro Pressure Tubes , Threshold Stress Intensity Factor (K-IH) , Electrolytic Hydriding
Pressure tubes pick up hydrogen while they are in service within CANDU reactors. Sufficiently high hydrogen concentration can lead to hydride precipitation during reactor shutdown/repair at flaws, resulting in the potential for eventual rupture of the pressure tubes by a process called Delayed Hydride Cracking (DHC). The threshold stress intensity factor (KIH) below which the cracks will not grow by delayed hydride cracking of Zr-2.5Nb micro pressure tubes (MPTs) has been determined using a load increasing mode (LIM) method at different temperatures. MPTs have been used to allow easy study of the impact of properties like texture and grain size on DHC. Previous studies on MPTs have focused on creep and effects of stress on hydride orientation; here the use of MPTs for DHC studies is confirmed for the first time. Micro pressure tube samples were hydrided to a target hydrogen content of 100 ppm using an electrolytic method. For DHC testing, 3 mm thick half ring samples were cut out from the tubes using Electrical Discharge Machining (EDM) with a notch at the center. A sharp notch with a root radius of 15 µm was introduced by broaching to facilitate crack initiation. The direct current potential drop method was used to monitor crack growth during the DHC tests. For the temperature range tested the threshold stress intensity factors for the micro pressure tube used were found to be 6.5-10.5 MPa.m1/2 with the value increasing with increasing temperature. The average DHC velocities obtained for the three different test temperatures 180, 230 and 250oC were 2.64, 10.87 and 8.45 x 10-8 m/s, respectively. The DHC data obtained from the MPTs are comparable to the data published in the literature for full sized CANDU pressure tubes.
External DOI