The Effects of Sympatry on Patterns of Bill Morphology Between Closely Related Species of Birds, Worldwide

Loading...
Thumbnail Image

Authors

Kim, Stephanie Soun

Date

2016-06-29

Type

thesis

Language

eng

Keyword

Birds , Sympatry , Closely Related Species , Bill Morphology

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

When closely related species co-occur in sympatry, they face a significant challenge. They must adapt to the same local conditions in their shared environment, which favours the convergent evolution of traits, while simultaneously minimizing the costs of competition for shared resources that typically favours the divergent evolution of traits. Here, we use a comparative sister lineage approach to test how most species have responded to these conflicting selection pressures in sympatry, focusing on a key ecological trait: the bill morphology of birds. If similar bill morphologies incur fitness costs due to species interactions, then we predicted that the bill morphologies of closely related species would differ more in sympatry compared with allopatry. Alternatively, if similar bill morphologies incur fitness benefits due to local adaptation, then we predicted that the bill morphologies would be more similar in sympatry compared with allopatry. We used museum specimens to measure five aspects of bill (maxilla) morphology – depth, length, width, side shape, and bottom shape – in diverse bird species from around the world to test our alternative hypotheses. We found support for both divergent evolution and convergent evolution (or trait retention) in one ecological trait: closely related sympatric species diverged in bill depth, but converged in side shape. These patterns of bill evolution were influenced by the genetic distance between closely related sister taxa and the geographic distance between allopatric lineages. Overall, our results highlight species interactions as an important mechanism for the evolution of some (bill depth), but not all (bill shape), aspects of bill morphology in closely related species in sympatry, and provide strong support for the bill as a key ecological trait that can adapt in different ways to the conflicting challenges of sympatry.

Description

Thesis (Master, Biology) -- Queen's University, 2016-06-24 13:29:58.729

Citation

Publisher

License

Queen's University's Thesis/Dissertation Non-Exclusive License for Deposit to QSpace and Library and Archives Canada
ProQuest PhD and Master's Theses International Dissemination Agreement
Intellectual Property Guidelines at Queen's University
Copying and Preserving Your Thesis
Creative Commons - Attribution - CC BY
This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.

Journal

Volume

Issue

PubMed ID

External DOI

ISSN

EISSN