Source-Channel Mappings with Applications to Compressed Sensing

Loading...
Thumbnail Image

Authors

Abou Saleh, Ahmad

Date

2011-07-29

Type

thesis

Language

eng

Keyword

source-channel mappings , compressed sensing

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

Tandem source-channel coding is proven to be optimal by Shannon given unlimited delay and complexity in the coders. Under low delay and low complexity constraints, joint source-channel coding may achieve better performance. Although digital joint source-channel coding has shown a noticeable gain in terms of reconstructed signal quality, coding delay, and complexity, it suffers from the leveling-off effect. However, analog systems do not suffer from the leveling-off effect. In this thesis, we investigate the advantage of analog systems based on the Shannon-Kotel’nikov approach and hybrid digital-analog coding systems, which combine digital and analog schemes to achieve a graceful degradation/improvement over a wide range of channel conditions. First, we propose a low delay and low complexity hybrid digital-analog coding that is able to achieve high (integer) expansion ratios ( >3). This is achieved by combining the spiral mapping with multiple stage quantizers. The system is simulated for a 1 : 3 bandwidth expansion and the behavior for a 1 : M (with M an integer >3) system is studied in the low noise level regime. Next, we propose an analog joint source-channel coding system that is able to achieve a low (fractional) expansion ratio between 1 and 2. More precisely, this is an N : M bandwidth expansion system based on combining uncoded transmission and a 1 : 2 bandwidth expansion system (with N < M < 2N).Finally, a 1 : 2 analog bandwidth expansion system using the (Shannon-Kotel’nikov) Archimedes’ spiral mapping is used in the compressed sensing context, which is inherently analog, to increase the system’s immunity against channel noise. The proposed system is compared to a conventional compressed sensing system that assumes noiseless transmission and a compressed sensing based system that account for noise during signal reconstruction.

Description

Thesis (Master, Electrical & Computer Engineering) -- Queen's University, 2011-07-29 02:30:11.978

Citation

Publisher

License

This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.

Journal

Volume

Issue

PubMed ID

External DOI

ISSN

EISSN