Mathematics Problems and Thinking Mathematically in Undergraduate Mathematics

Loading...
Thumbnail Image

Authors

Matthews, Asia R.

Date

2015-05-01

Type

thesis

Language

eng

Keyword

problem design , ill-structured , mathematics education , Creative , thinking mathematically , mathematical thinking

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

Mathematics is much more than a formal system of procedures and formulae; it is also a way of thinking built on creativity, precision, reasoning, and representation. I present a model for framing the process of doing mathematics within a constructivist ideology, and I discuss two fundamental parts to this process: mathematical thinking and the design of undergraduate mathematics problems. I highlight the mathematical content and the structuredness of the problem statement and I explain why the initial work of re-formulating an ill-structured problem is especially important in learning mathematics as a mental activity. Furthermore, I propose three fundamental processes of mathematical thinking: Discovery (acts of creation), Structuring (acts of arranging), and Justification (acts of reflection). In the empirical portion of the study, pairs of university students, initially characterized by certain affective variables, were observed working on carefully constructed problems. Their physical and verbal actions, considered as proxies of their mental processes, were recorded and analyzed using a combination of qualitative and quantitative measurement. The results of this research indicate that ill-structured problems provide opportunities for a concentration of Discovery and Structuring. Though all of the identified processes of mathematical thinking were observed, students who are highly metacognitive appear to engage in more frequent and advanced mathematical thinking than their less metacognitive peers. This study highlights pedagogical opportunities, for both highly metacognitive students as well as for those who demonstrate fewer metacognitive actions, arising from the activity of doing ill-structured problems. The implications of this work are both theoretical, providing insight into the relationship between metacognition and student “performance,” and practical, by providing a simple tool for identifying processes of mathematical thinking.

Description

Thesis (Ph.D, Mathematics & Statistics) -- Queen's University, 2015-04-30 11:28:32.416

Citation

Publisher

License

Queen's University's Thesis/Dissertation Non-Exclusive License for Deposit to QSpace and Library and Archives Canada
ProQuest PhD and Master's Theses International Dissemination Agreement
Intellectual Property Guidelines at Queen's University
Copying and Preserving Your Thesis
Creative Commons - Attribution - CC BY
This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.

Journal

Volume

Issue

PubMed ID

External DOI

ISSN

EISSN