Lineup Size and Number of Cues: When Bigger Isn’t Better

Loading...
Thumbnail Image

Authors

Kalmet, Natalie

Date

2016-10-03

Type

thesis

Language

eng

Keyword

Face Recognition , Lineups

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

Larger lineups could protect innocent suspects from being misidentified; however, they can also decrease correct identifications. Bertrand (2006) investigated whether the decrease in correct identifications could be prevented by adding more cues, in the form of additional views of lineup members’ faces, to the lineup. Adding these cues was successful to an extent. The current series of studies attempted to replicate Bertrand’s (2006) findings while addressing some methodological issues—namely, the inconsistency in image size as lineup size increased. First, I investigated whether image size could affect face recognition (Chapter 2) and found it could, but that it also affected previously-seen (“old”) versus previously-unseen (“new”) faces differently. Specifically, smaller image sizes at exposure lowered accuracy for old faces, while these same image sizes at recognition lowered accuracy for new faces. Although these results indicate that target recognition would be unaffected by image size at recognition (i.e., during a lineup), lineups are also comprised of previously-unseen faces, in the form of fillers and innocent suspects. Because image size could affect lineup decisions, as it could become more difficult to realize fillers are previously-unseen, I decided to replicate Bertrand (2006) while keeping image size constant in Chapters 3 (simultaneous lineups) and 4 (simultaneous-presentation, sequential decisions). In both Chapters, the integral findings were the same: correct identification rates decreased as lineup size increased from 6- to 24-person lineups, but adding cues had no effect. The inability to replicate Bertrand (2006) could mean that the original finding was due to chance, but alternate explanations also exist, such as the overall size of the array, the degree to which additional cues overlap, and the length of the target exposure. These alternate explanations, along with directions for future research, are discussed in the following Chapters.

Description

Thesis (Ph.D, Psychology) -- Queen's University, 2016-09-30 18:53:32.036

Citation

Publisher

License

Queen's University's Thesis/Dissertation Non-Exclusive License for Deposit to QSpace and Library and Archives Canada
ProQuest PhD and Master's Theses International Dissemination Agreement
Intellectual Property Guidelines at Queen's University
Copying and Preserving Your Thesis
Creative Commons - Attribution-Non-commercial-No Derivate Works - CC BY-NC-ND
This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.

Journal

Volume

Issue

PubMed ID

External DOI

ISSN

EISSN