The Effects of Elevated Temperatures on Fibre Reinforced Polymers for Strengthening Concrete Structures

Thumbnail Image
Khalifa, Tarek
Fire resistance , FRP
Fibre reinforced polymer (FRP) materials have been a material of interest in the field of structural engineering due to their superior mechanical properties such as high strength to weight ratios and resistance to environmental degradation and corrosion. Even though research has established the material to be a viable option for construction they are highly susceptible to elevated temperatures. There are several systems available on the market and a great deal of research needs to be conducted to investigate the change in properties and different behaviour at elevated temperature to serve as a better basis for design. The main objective of this project and the experimental program presented in this thesis is to study the thermo mechanical properties of the available systems on the market. A summary of the previous research done in the area covering other materials is presented providing an introduction to the behaviour of different systems under elevated temperature. Then, two different experimental programs are presented. The first considers the glass transition temperature and thermal decomposition of the different systems and the second examines the tensile strength of the different systems under different temperature regimes. The results of both experimental programs are presented and then a connection between the thermo mechanical properties of the resins and the overall strength of the system is established. The research demonstrates that the glass transition temperature of the resin used for an FRP strengthening system is the main determinant of the performance at high temperatures.
External DOI