Protolith Affiliation and Tectonometamorphic Evolution of the Gurla Mandhata Core Complex, NW Nepal Himalaya

Loading...
Thumbnail Image

Authors

Ahenda, Mark

Date

Type

thesis

Language

eng

Keyword

Himalaya , Tectonics , Geochemistry , Geochronology , Structural Geology , Gurla Mandhata , Core Complex , Gneiss Dome

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

Migmatite-cored gneiss domes in the Himalaya are valuable structures that expose the mid-crust, allowing for the investigation of tectonic and structural processes governing the evolution of the Himalayan orogen. Located in NW Nepal, the Gurla Mandhata core complex exposes the Himalayan Metamorphic Core (HMC), a sequence of high metamorphic-grade gneiss, migmatite, and granite, in the hinterland of the Himalayan orogen. Sm-Nd isotopic analyses indicate that these rocks have both Greater Himalayan sequence (GHS) and Lesser Himalayan sequence (LHS) protolith affinity. In-situ U-Th/Pb monazite petrochronology coupled with petrographic, structural, and microstructural observations reveal that the core complex is composed solely of rocks in the hanging wall of the Main Central Thrust (MCT). Rocks from the core complex record Eocene Eohimalayan and late-Oligocene to early-Miocene Neohimalayan metamorphic pulses (U-Th/Pb monazite age peaks of 40 Ma, 25-19 Ma, and 19-16 Ma) along with a pre-Himalayan Ordovician pulse (ca. 470 Ma). The combination of Sm-Nd isotopic analysis and U-Th/Pb monazite petrochronology demonstrates that both GHS and LHS protolith material is captured in the hanging wall of the MCT and experienced Cenozoic Himalayan metamorphism during south-directed extrusion in west Nepal. Monazite ages do not record metamorphism coeval with late Miocene east-directed exhumation, demonstrating that peak metamorphism and generation of anatectic melt in the core complex had ceased prior to the onset of hinterland orogen-parallel extension at ~15-13 Ma. The geometry of the Gurla Mandhata core complex requires significant hinterland crustal thickening prior to 16 Ma, which is attributed to ductile HMC thickening and footwall accretion of LHS protolith material associated with a ramp-flat MHT geometry below the core complex. The Gurla Mandhata core complex shares many structural and tectonometamorphic characteristics with the North Himalayan domes. This thesis demonstrates that isotopic signatures such as Sm-Nd should only be used to characterize lithotectonic units and structural features across the Himalaya in conjunction with supporting petrochronological and structural data. Further, this thesis highlights the necessity for clear definitions of Himalayan metamorphic rocks that can differentiate between their protolith and tectonometamorphic characteristics.

Description

Citation

Publisher

License

Queen's University's Thesis/Dissertation Non-Exclusive License for Deposit to QSpace and Library and Archives Canada
ProQuest PhD and Master's Theses International Dissemination Agreement
Intellectual Property Guidelines at Queen's University
Copying and Preserving Your Thesis
This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.

Journal

Volume

Issue

PubMed ID

External DOI

ISSN

EISSN