Effects of Leaving Group Ability and Microstructure on the Reactivity of Halogenated Poly(isobutylene-co-isoprene)

Loading...
Thumbnail Image
Date
2011-10-03
Authors
McNeish, Joanne
Keyword
Leaving Group Ability , Chlorinated Poly(isobutylene-co-isoprene) , Brominated Poly(isobutylene-co-isoprene) , Sulfur Cure , Nucleophilic Substitution
Abstract
Halogenation of poly(isobutylene-co-isoprene) (IIR) increases its reactivity towards sulphur and other nucleophiles. Currently brominated (BIIR) and chlorinated (CIIR) derivatives are commercially available; however, an iodinated derivative has been briefly investigated. The effects of leaving group ability and microstructure on the reactivity of halogenated poly(isobutylene-co-isoprene) were studied to put iodobutyl rubber reactivity into context and to compare existing commercial products to their isomeric derivatives. Polymers containing halomethyl (r-CIIR, r-BIIR, r-IIIR) isomers of butyl rubber were prepared from as-received BIIR to compare the effect of leaving group on thermal stability and reactivity towards nucleophilic substitution. The polymer containing (E,Z)-endo-iodomethyl isomers (r-IIIR) readily underwent nucleophilic substitution at low temperatures; however, it was sensitive towards dehydrohalogenation at temperatures above 65⁰C. At temperatures between 100⁰C and 135⁰C, the bromomethyl derivative (r-BIIR) demonstrated the best balance between reactivity toward nucleophilic substitution and dehydrohalogenation. Exceptional thermal stability at temperatures up to 190⁰C was displayed by the chloromethyl derivative (r-CIIR); however, it was unreactive at low temperatures towards certain nucleophiles. This lack of reactivity shown by r-CIIR was not consistent with all nucleophiles, as reaction dynamics with TBAAc display its variable reactivity towards nucleophilic substitution with results parallel to those of r-BIIR. Exo-methylene allylic halides (Exo-Br, Exo-Cl) and (E,Z)-endo-halomethyl (r-BIIR, r-CIIR) isomers were vulcanized with sulphur to determine the effect of microstructure on reactivity. Results showed a clear effect of microstructure on the ability to cure with sulphur. While the Exo-Cl isomer has no ability to cure, when rearranged to its (E,Z)-endo-chloromethyl isomer curing occurs readily. Both the Exo-Cl and (E,Z)-endo-bromomethyl isomers readily vulcanize in the presence of sulphur, however Exo-Br cures to a greater extent.
External DOI