Lymphocyte Contributions to Local and Systemic Cardiovascular Regulation in Mouse Pregnancy

Loading...
Thumbnail Image

Authors

Burke, Suzanne Diana

Date

2010-09-02T15:05:33Z

Type

thesis

Language

eng

Keyword

Immunology , Lymphocytes , Radiotelemetry , Blood Pressure , Type 1 Diabetes , Genetically modified mice , Pregnancy , Uterine natural killer cells , Vascular remodeling

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

Healthy term pregnancy requires precisely timed coordination of multiple systems, including reproductive, neuroendocrine, immune and cardiovascular. Dynamic maternal alterations occur systemically as well as locally within the reproductive tract. Systemic cardiovascular changes during gestation are relatively conserved in mammals, permitting comparison. These physiological changes are relatively acute and reversible, in contrast to the pathological changes seen during cardiovascular disease development. Gestational hypertensive disorders, such as preeclampsia, are the leading causes of maternal and fetal morbidity and mortality. The pathogenesis of preeclampsia is not fully elucidated, but perturbation of the immune system is a fundamental component. The angiogenic and vascular properties of uterine NK lymphocytes have been well studied in mice and women, but their relationships to gestational blood pressure regulation and cardiovascular adaptations have not been addressed. In non-pregnant women and mice, T cells, but not B cells, have been found to alter cardiovascular functioning. NK cells in humans also possess these capabilities, but no functional studies have been completed. The aim of this thesis was to define the role of NK and T lymphocytes in cardiovascular adaptations during mouse gestation. Using chronic radiotelemetry, histology, post-mortem and other techniques, female inbred mice of differing genotypes that lack specific lymphocyte subsets were compared before and across gestation. In normal, immune competent mice, a five-phase gestational blood pressure profile was found. This dynamic profile corresponded to stages of placental development. In mice with a compound deficit in arterial modification and lymphocytes, no gestational hypertension was observed. To elevate the maternal challenge of pregnancy, studies of pregnant, autoimmune Type 1 Diabetic mice were conducted. Impaired spiral artery remodeling, dysfunctional lymphocytes and growth-restricted fetuses were identified. From mid-gestation, diabetic pregnant mice were hypotensive and bradycardic and showed signs of pre-renal failure (proteinuria and electrolyte imbalances). In pregnant mice lacking T cells, tachycardia was observed despite otherwise normal gestational outcomes. In pregnant mice lacking T cells with impaired NK cells, blood pressure was blunted and tachycardia was observed. These findings support the conclusion that impaired spiral artery remodeling is insufficient to cause gestational hypertension in mice. The data further identify a role for T and NK cells in cardiac function during gestation.

Description

Thesis (Ph.D, Anatomy & Cell Biology) -- Queen's University, 2010-09-01 20:56:15.648

Citation

Publisher

License

This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.

Journal

Volume

Issue

PubMed ID

External DOI

ISSN

EISSN