Adaptive Feedback Control of Generalized Hamiltonian Systems With Unstructured Components

Loading...
Thumbnail Image

Authors

Alavi, Seyedabbas

Date

Type

thesis

Language

eng

Keyword

Adaptive control , Feedback control , Hamiltonian systems , Stability

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

This dissertation considers the problem of feedback controller design for systems represented in non-exact generalized Hamiltonian form. The generalized Hamiltonian representation of dynamical systems has some properties that facilitate stability and controller design for nonlinear control systems. Despite extensive studies on generalized or port-Hamiltonian controlled systems, application to chemical engineering processes is limited as mass and energy balances are difficult to re-write exactly in potential-driven forms. We represent dynamics as a combination of a structured generalized Hamiltonian component and an unstructured component. We explore the stability of the unforced system after introducing the non-exact generalized Hamiltonian form and show that the non-exact generalized Hamiltonian system is stable in open-loop given mild assumptions on the unstructured component. Then, we exploit the properties of the structured part of the dynamic to design a state and observer-based feedback controller to stabilize the system at a desired set-point. In the next stage, we demonstrate the robustness of the proposed algorithms by modifying the obtained controller so that it can handle uncertain parameters and ensure stability even if exact parameter estimation is not available. In the last phase of the research, we aim to develop adaptive state and observer-based stabilizing feedback controllers guaranteeing exact parameter estimation. Different cases and applications are discussed.

Description

Citation

Publisher

License

Queen's University's Thesis/Dissertation Non-Exclusive License for Deposit to QSpace and Library and Archives Canada
ProQuest PhD and Master's Theses International Dissemination Agreement
Intellectual Property Guidelines at Queen's University
Copying and Preserving Your Thesis
This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.
CC0 1.0 Universal

Journal

Volume

Issue

PubMed ID

External DOI

ISSN

EISSN