Securing Vehicle Electronic Control Unit (ECU) Communications and Stored Data

Loading...
Thumbnail Image

Authors

Alam, Swawibe

Date

Type

thesis

Language

eng

Keyword

Connected vehicles , Vehicle data security , Blockchain

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

Nowadays, the automobile industry is integrating many new features into vehicles. To provide these features, various electronic systems are being added. These systems are coordinated by different ECUs (Electronic Control Unit). Vehicle ECUs are internally connected through multiple communication buses. Any ECU connected to the bus can read or send data to other ECUs. As a result, if an adversary can compromise one of the ECUs, then the adversary will be able to access and exploit data of other important ECUs. The absence of confidentiality is the main reason for that. Furthermore, the absence of data integrity and authenticity make the communications more vulnerable. In the past, it has been shown that an adversary can take control of the vehicle exploiting the inadequacy of CIA (Confidentiality, Integrity, and Authenticity). Moreover, an adversary can modify the stored data of an important ECU, if it is compromised. To solve these problems, we propose the use of symmetric key cryptography and elliptic curve-based Public Key Encryption (PKE) for ensuring confidentiality and the use of digital signature for ensuring integrity and authenticity. In addition, we propose the adoption of an identity-based access control in Mother ECUs (MECU, also known as a domain controller) to control the communication permissions. We also introduce Blockchain in vehicles to protect the stored data of ECUs. Finally, we integrate a watcher to monitor the stored data and report if it is modified. We implement the proposed technique in two platforms, namely Docker and the ARM architecture-based Raspberry Pi Board. Our experiments show that the proposed technique can improve security in ECU communications. The watcher reports when an ECU data is modified which helps limit the damage when an ECU is compromised.

Description

Citation

Publisher

License

CC0 1.0 Universal
Queen's University's Thesis/Dissertation Non-Exclusive License for Deposit to QSpace and Library and Archives Canada
ProQuest PhD and Master's Theses International Dissemination Agreement
Intellectual Property Guidelines at Queen's University
Copying and Preserving Your Thesis
This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.

Journal

Volume

Issue

PubMed ID

External DOI

ISSN

EISSN