A Study of Subsonic Air-Air Ejectors with Short Bent Mixing Tubes

Loading...
Thumbnail Image

Authors

Maqsood, Asim

Date

2008-04-01T17:29:00Z

Type

thesis

Language

eng

Keyword

Ejector , Mixing tube , Bent , Entraining

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

An experimental and numerical study of air-air bent exhaust ejectors was carried out. The objective of the study was to determine the effect of a bend on the performance of exhaust ejectors. The ejectors consisted of nozzles, mixing tubes and in some cases entraining diffusers. As part of this study the effect of swirl in the primary flow and the temperature ratio of the primary to the secondary flow were also investigated. The study included testing of round and oblong sectioned ejectors with and without entraining diffusers. The experimental testing was performed on two different wind tunnels capable of blowing air at a maximum mass flow rate of 2.2 kg/s at ambient and elevated temperatures. Flow measurements were made upstream of the nozzle, at the nozzle exit and at the exit of the ejector. Pumping, pressure rise and total efficiency of the ejector were studied with respect to the bend angle, swirl angle and the primary to secondary flow temperature ratio. A commercial CFD code was used to evaluate the effectiveness of commercial CFD using limited resources for designing of such devices. The pumping ratio and pressure rise decrease with the increase in the degree of bend. Swirl up to a certain angle has a useful effect on the performance of a bent ejector. The entraining diffuser enhances the performance of a bent ejector. The CFD models based on commercial solver were able to predict the flow structures and the variation of the performance parameters with the bend and swirl angle. However, generally the CFD models were not able to predict the exact values of the performance parameters.

Description

Thesis (Ph.D, Mechanical and Materials Engineering) -- Queen's University, 2008-03-31 05:53:54.89

Citation

Publisher

License

This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.

Journal

Volume

Issue

PubMed ID

External DOI

ISSN

EISSN