Dysfunctional Muscle Blood Flow Regulation During Exercise in Type 2 Diabetes

Loading...
Thumbnail Image

Authors

Pak, Melissa

Date

2009-10-19T18:17:23Z

Type

thesis

Language

eng

Keyword

Type 2 Diabetes , Blood Flow , Exercise , Oxygen Uptake

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

There is some evidence to suggest that oxygen consumption (VO2) and oxygen delivery to muscle are reduced at exercise onset and steady state in individuals with type 2 diabetes (T2D), although no studies have combined measurements of both muscle blood flow and VO2 during exercise in this population. OBJECTIVES: 1) To determine whether a reduction in VO2 during exercise would be accompanied by reduced leg blood flow (LBF). 2) To examine the dynamic response characteristics of LBF to determine whether feedforward and/or feedback control systems of blood flow regulation are impaired. METHODS: Four men with T2D and six healthy, activity matched controls (CON) performed supine, two-leg knee extension/flexion exercise tests involving progressive increase in exercise intensity to exhaustion and step increases to a low intensity equivalent to lifting 7.5 kg (LO7.5kg), and a moderate intensity equivalent to 90% of ventilatory threshold (VT90%). MEASUREMENTS: LBF, VO2, mean arterial pressure, heart rate, and stroke volume were measured continuously. RESULTS: Means ± SE, CON vs. T2D. 1) ∆VO2 was not different between groups during the incremental test (P= 0.264), ∆LBF in T2D tended to be lower (P = 0.098). 2) ∆VO2 was not different between groups at any time during LO7.5kg (P = 0.351). Individuals with T2D demonstrated a lower ∆LBF at time = 15 s (3435.6 ± 275.0 vs. 2120.4 ± 218.4 ml/min, P = 0.018). 3) Gains for baseline (G0) and phase I (G1) LBF adaptation to LO7.5kg were lower in T2D compared to CON (G0: 959.8 ± 111.3 vs. 617.0 ± 22.1 ml/min, P = 0.044; G1: 3662.1 ± 229.0 vs. 2128.1 ± 161.6 ml/min, P = 0.002). 4) The time required to achieve 63% of the total response magnitude tended to be slower in T2D (LO7.5kg: 14.3 ± 1.7 vs. 23.1 ± 4.2 s; VT90%: 26.2 ± 3.5 vs. 40.0 ± 7.5 s; P = 0.095). CONCLUSIONS: 1) The initiatory rise in LBF is significantly lower in individuals with T2D, likely due to impairments in feedforward control mechanisms of blood flow regulation, 2) Individuals with T2D do not demonstrate lower VO2 responses to exercise despite an impaired LBF response.

Description

Thesis (Master, Kinesiology & Health Studies) -- Queen's University, 2009-10-09 17:52:31.708

Citation

Publisher

License

This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.

Journal

Volume

Issue

PubMed ID

External DOI

ISSN

EISSN