The Computational Power of Extended Watson-Crick L Systems
Loading...
Authors
Sears, David
Date
2010-12-07T16:56:42Z
Type
thesis
Language
eng
Keyword
Formal Languages , Lindenmayer system , DNA Computing , Watson-Crick complementarity , recursively enumerable language , E0L system
Alternative Title
Abstract
Lindenmayer (L) systems form a class of interesting computational formalisms due to their parallel nature, the various circumstances under which they operate, the restrictions imposed on language acceptance, and other attributes. These systems have been extensively studied in the
Formal Languages literature. In the past decade a new type of Lindenmayer system had been proposed: Watson-Crick Lindenmayer Systems. These systems are essentially a marriage between Developmental systems and DNA Computing. At their heart they are Lindenmayer systems augmented with a complementary relation amongst elements in the system just as the base pairs of DNA strands can be complementary with respect to one another. When conditions and a mechanism for 'switching' the state of a computation to it's complementary version are provided then these systems can become surprisingly more powerful than the L systems which form their backbone. This dissertation explores the computational power of new variants of Watson-Crick L systems. It is found that many of these systems are Computationally-Complete. These investigations differ from prior ones in that the systems under consideration have extended alphabets and usually Regular Triggers for complementation are considered as opposed to Context-Free Triggers investigated in previous works.
Description
Thesis (Master, Computing) -- Queen's University, 2010-12-06 18:29:23.584
Citation
Publisher
License
This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.