A Computational Approach to Predicting Distance Maps from Contact Maps

Loading...
Thumbnail Image

Authors

Kuo, Tony Chien-Yen

Date

2012-05-23

Type

thesis

Language

eng

Keyword

Protein Structure , Contact Map

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

One approach to protein structure prediction is to first predict from sequence, a thresholded and binary 2D representation of a protein's topology known as a contact map. Then, the predicted contact map can be used as distance constraints to construct a 3D structure. We focus on the latter half of the process and aim to obtain a set of non-binary distance constraints from contacts maps. This thesis proposes an approach to extend the traditional binary definition of “in contact” by incorporating fuzzy logic to construct fuzzy contact maps from a set of contact maps at different thresholds, providing a vehicle for error handling. Then, a novel template-based similarity search and distance geometry methods were applied to predict distance constraints in the form of a distance map. The three-dimensional coordinates were then calculated from the predicted distance constraints. Experiments were conducted to test our approach for various levels of noise. As well, we compare the performance of fuzzy contact maps to binary contact maps in the framework of our methodology. Our results showed that fuzzy contact map similarity was indicative of distance map similarity. Thus, we were able to retrieved similar distance map regions using fuzzy contact map similarity. The retrieved distance map regions provided a good starting point for adaptation and allowed for the extrapolation of missing distance values. We were thus able to predict distance maps from which, the three-dimensional coordinates were able to be calculated. Testing of this framework on binary contact maps revealed that fuzzy contact maps had better performance with or without noise due to a stronger correlation between fuzzy contact map similarity and distance map similarity. Thus, the methodology described in this thesis is able to predict good distance maps from fuzzy contact maps in the presence of noise and the resulting coordinates were highly correlated to the performance of the predicted distance maps.

Description

Thesis (Ph.D, Computing) -- Queen's University, 2012-05-23 13:59:28.12

Citation

Publisher

License

This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.

Journal

Volume

Issue

PubMed ID

External DOI

ISSN

EISSN