Reactive Ionomers: N-vinylimidazolium Bromide Derivatives of Poly(isobutylene-co-isoprene) and Poly(isobutylene-co-para-methylstyrene)

Loading...
Thumbnail Image

Authors

Ozvald, Adam Michael

Date

2012-04-02

Type

thesis

Language

eng

Keyword

Ionomer , Peroxide Curing , Butyl Rubber

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

Ionomers bearing reactive ion-pair functionality are a novel class of materials that have been prepared. The N-alkylation of N-vinylimidazole by poly(isobutylene-co-isoprene) produced the reactive ionomer product in good yield, through a solvent-borne process. Solvent-free conditions can also be used to produce reactive ionomers by the N-alkylation of N-vinylimidazole by poly(isobutylene-co-para-methylstyrene). Characterization of these derivatives was carried out with the assistance of model compounds, and showed excellent agreement with 1H NMR spectra. These reactive ionomers readily crosslink with peroxide at elevated temperatures and in the absence of peroxide they have excellent thermal stability. The amount of crosslinking can be altered based on the vinyl content of the material, to target various applications. N-alkylation of N-vinylimidazole can be carried out concurrently with a non-reactive N-alkylimidazole to achieve desired vinyl contents and tailor the physical properties of these materials. These materials contain both ionic and covalent crosslink networks, and this hybrid network structure provides these materials with unique crosslink structures and stress relaxation properties. Conventional rubber fillers are compatible with these novel reactive ionomers. Carbon black and precipitated silica have no adverse effects on the peroxide crosslinking of the elastomers and a constant peroxide loading can be used regardless of the filler loading. Payne analysis shows good filler dispersion at low filler loading; however, there is some evidence of reticulate filler network formation at high filler loadings.

Description

Thesis (Master, Chemical Engineering) -- Queen's University, 2012-03-31 21:12:46.618

Citation

Publisher

License

This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.

Journal

Volume

Issue

PubMed ID

External DOI

ISSN

EISSN