Automated Mineralogical Analysis of <250 µm Heavy Minerals in Till: Method Development and Case Study

Loading...
Thumbnail Image

Authors

Lougheed, Donald

Date

Type

thesis

Language

eng

Keyword

Geology , Mineral exploration , Applied geochemistry , Drift exploration , Indicator minerals , Heavy mineral concentrates , Automated mineralogy

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

Exploration under glacial sediment cover is a necessary part of modern mineral exploration in Canada. Traditional indicator methods use visual examination to identify mineral grains in the 250 to 2000 µm fraction of till heavy-mineral concentrates (HMC). This study tests automated mineralogical methods using scanning electron microscopy to identify indicator minerals in the fine (<250 µm) HMC fraction of till. Automated mineralogy of polished grains from the fine HMC enables rapid data collection (10,000–300,000 grains/sample). Samples collected near three deposits were used to test this method: 4 from the upper amphibolite Izok Lake volcanogenic massive sulfide deposit, Nunavut, 5 from the Sisson granite-hosted W-Mo deposit, New Brunswick, and 4 from the Triple B kimberlite, Ontario. The less than 250 µm HMC fraction of till samples collected down-ice of each deposit contain ore and alteration minerals typical of their deposit type. Sulfide minerals occur mainly as inclusions in oxidation-resistant minerals, including minerals previously identified in the metamorphic alteration halo of each deposit, and are found to occur farther down-ice than the grains identified visually in the greater than 250 µm HMC fraction. Minerals that are traditionally difficult to identify using visual identification are easily discriminated by composition. The classic suite of kimberlite indicator suite is fully identified, and energy dispersive X-ray spectroscopy enables discrimination of compositional sub-populations without the use of more expensive/time consuming targeted chemical analysis techniques. This project developed a workflow for analyzing <250 µm HMC with automated mineralogy that is reproducible and relatable both within and between studies. The method described expands the detectable footprint for certain indicator minerals, identifies new indicator minerals, and enhances the information on the mineralogical composition of till samples that can be collected from till samples.

Description

Citation

Publisher

License

Queen's University's Thesis/Dissertation Non-Exclusive License for Deposit to QSpace and Library and Archives Canada
ProQuest PhD and Master's Theses International Dissemination Agreement
Intellectual Property Guidelines at Queen's University
Copying and Preserving Your Thesis
This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.
Attribution-NonCommercial 3.0 United States

Journal

Volume

Issue

PubMed ID

External DOI

ISSN

EISSN