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Abstract

This thesis describes the application of the stochastic-flow-modeling (SFM) approach

to represent the quality behavior of a manufacturing system. Initially, a simple,

one-product type SFM is discussed and then a more complex multiple-product man-

ufacturing system is developed. This quality SFM-based model has aggregation by

station, product, and operational shift. Subsequently, potential supervisory control

architectures that could be used in conjunction with this quality-based SFM are dis-

cussed and developed. Distribution parameter fitting is explored using static and

adaptive approaches and a comparison between these two approaches is given. Then,

the accuracy of the SFM modeling technique is demonstrated using two simulation

examples.

Effective equipment maintenance is essential for a manufacturing plant seeking

to produce high quality products. The impact of equipment reliability and quality

on throughput have been well established, but the relationship between maintenance

and quality is not always clear nor direct. Therefore, after developing a SFM to

represent the quality of a manufacturing system, the focus of this work shifts towards

identifying correlations between maintenance and quality. This thesis describes a

statistical modeling method that makes use of a Kalman filter to identify correlations

between independent sets of maintenance and quality data. With such a method,
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maintenance efforts can be better prioritized to satisfy both production and quality

requirements. In addition, this method is used to compare results from the theoretical

maintenance-quality model to data from an actual manufacturing system. Results of

the analysis indicate the potential for this method to be applied to preventive, as

well as reactive maintenance decisions, since ageing aspects of equipment are also

considered in the model.
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Chapter 1

Introduction

1.1 Motivation

Most manufacturing firms are large, complex systems characterized by several decision-

making subsystems such as finance, personnel, marketing, and operations. Such firms

may have a number of plants and warehouses that produce a large number of different

products with a wide variety of machines and equipment. Moreover, these manufac-

turing systems are subject to discrete events such as construction of new facilities,

purchase of new equipment and disposal of old, machine setups, failures and repairs,

and the introduction of new products. These events may be deterministic or stochas-

tic. Therefore, management must recognize and react to these events. Trying to

model a manufacturing system while taking into account all of these modeling pa-

rameters is not an easy job. Due to the large size of these systems and the presence of

these events, obtaining exact optimal policies to run these systems is nearly impossible

both theoretically and computationally [41].

Furthermore, effective equipment maintenance is essential for a manufacturing
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plant seeking to produce high quality products. The impact of equipment reliabil-

ity and quality on throughput have been well established, however, the relationship

between maintenance and quality is not always clear nor direct. Frequently, in man-

ufacturing plants when product quality does not meet requirements, manufacturing

engineers first check the product for any defects due to the process. In most cases,

engineers are able to find the defective component of the product and replace it.

However, sometimes poor quality is not simply due to defective components; rather,

it is due to defects in the processing station. In this sense, ageing of equipment plays

a crucial role in xzdecreasing the quality of the overall product. With time, mechan-

ical parts in an assembly line, such as conveyor belts and gears, become worn and

therefore, an increased number of products are rejected due to lower product quality.

Ensuring that proper maintenance is done on plant equipment can help achieve

target quality levels. Regular maintenance also helps to detect problems at an early

stage and hence reduces the cost of repairs [15, 29, 36]. Effective maintenance includes

monitoring machinery as well as trying to measure deterioration rates in order to

predict failures. According to George Herbert’s 1640 poem [34], “the loss of the

horseshoe nail caused the loss of the horseshoe, the horse, the rider, the battle, and

eventually the kingdom.” It would have been worthwhile, then, to have spent as

much as the kingdom is worth to maintain the nail in its proper place. Therefore,

performing regular maintenance may be seen as an extra expense in the short-term,

but in the long-term one can see the benefits of doing so [14, 34].

There are very few theoretical notions that describe the essential role of main-

tenance in manufacturing. However, empirical studies have indicated that there are
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four main competitive factors of manufacturing: quality, delivery performance, flex-

ibility and cost [25]. It can clearly be seen that quality is a factor that affects a

manufacturer’s performance and therefore, it is an operating aspect that should be

taken seriously by manufacturers.

1.2 Literature Review

1.2.1 Hybrid Modeling of Manufacturing Systems

In general, manufacturing system operations are modeled as discrete event systems

(DES). This class of system representations is widely recognized in queuing systems

[12]. This work complements such a DES model formulation by incorporating the

real-time behavior of manufacturing systems. One such approach is the use of so-

called timed-DES models [9]. A timed-DES model is a DES in which the occurrence

of each event is marked by a time variable counter. Although the timed-DES formu-

lation is easy to set up for simple systems, the complex, multi-scale nature of large

manufacturing systems limits its applicability. In previous research [1, 28], it was

found that the addition of continuous-time dynamics to DES models using a hybrid

modeling approach provides greater flexibility in modeling. In this approach, each

event can be characterized by specific dynamical properties, such as process delay

and process dynamics. This formulation can be used to introduce real-time infor-

mation such as product demand changes, personnel changes, and so on, along with

all the dynamically relevant variables that may influence real-time decision making

processes. Such models, which belong to a class of hybrid systems, allow the generic

application of existing modeling platforms. Using this modeling approach, a realistic
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manufacturing system was modeled and simulated [1].

One way to address the dynamical nature of manufacturing processes is to con-

sider a hybrid systems model [11, 39, 40, 47]. Hybrid control systems are those

that involve continuous-time dynamics and discrete-event behavior and require con-

trollers that may also have mixed continuous and discrete dynamics [2, 10]. Such

systems arise in engineering applications where time-varying processes (e.g., chemical

processes) are interconnected with software and/or hardware (e.g., a switching mech-

anism that opens and closes valves). Models for hybrid systems are particularly useful

for industrial problems that involve both logical-time constraints (where specifications

may involve requirements on the relative ordering of events) as well as real-time con-

straints (e.g., safety constraints in plant start-up and shut-down). Hybrid systems

models may also arise when systems integration issues are considered. In a number

of applications, such as tar sand mining operations, process information arising from

both discrete and continuous systems must be processed to provide effective control

and/or optimization of system operations.

Recently, a class of models called continuous flow models (CFM) [30] have been

proposed for the analysis of manufacturing systems. For each work station, the con-

tinuous flow models monitor the ability of a station to do work, its capacity and its

product outflow. They provide an elegant way to develop event-based continuous-time

models that are suitable for a large class of manufacturing systems. Successful appli-

cations of the CFM paradigm have led to new approaches for throughput optimization

in manufacturing systems [38, 42], real-time scheduling [37] and optimal resource allo-

cation [46], among others. Continuous flow models provide the modeling capabilities

of the finite state machines (FSM) representation of DES while circumventing the
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discrete nature of DES models. This attribute is important when one considers the

use of process models in optimization. The DES formulation requires intensive search

algorithms to find suboptimal solutions. As highlighted in the literature, it is rela-

tively easy to use CFM in the development of optimal algorithms. Stochastic flow

models (SFM) have also been proposed to take into account the stochastic nature of

process operations [13, 51, 52]. Recent developments have demonstrated that CFM

can yield control policies that can be implemented in real-time [52]. In contrast to

DES and CFM, the theory of hybrid systems remains an emerging area. Although

it provides a much more flexible and general approach to modeling the dynamics

of manufacturing systems, the current theory can only deal with relatively simple

applications that are generally treated as benchmark applications. More research is

required to develop a theory of hybrid systems that is widely applicable to complex

manufacturing systems.

1.2.2 Maintenance Terminology

Due to increased competition in global operations, many manufacturers have made

significant changes to the way they operate. These changes have lead to changes in

other areas of the business such as maintenance, which has been recognized by many

manufacturers as a key factor for enhanced performance and increased profitability

[15, 26, 29, 36].

In general there are three types of maintenance: proactive maintenance, reactive

maintenance and aggressive maintenance. Proactive maintenance can further be bro-

ken down to two types: preventive maintenance and predictive maintenance. Preven-

tive maintenance is a periodic maintenance done on plant equipment after a specific
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period of time or amount of machine use to ensure that normal operating conditions

are being satisfied [21, 23]. This type of maintenance uses estimated probabilities to

predict when a failure will occur. Some example of preventive maintenance include

lubrication of plant equipment, fine tuning, adjustments, equipment inspection and

replacement of parts. Therefore, preventive maintenance helps to detect problems at

an early stage, reduces machine breakdowns and extends the life of plant equipment.

However, it increases downtime of plant equipment to allow for inspections to take

place [43].

Predictive maintenance is a condition-based type of maintenance that is performed

in response to detecting certain conditions in plant equipment [21, 45]. This type of

maintenance uses diagnostic equipment to determine the physical condition of plant

equipment such as temperature, noise, lubrication and corrosion [17]. Therefore,

when one of these physical conditions goes beyond a certain threshold, predictive

maintenance is performed to restore it to its original condition or at least as close as

possible to its original condition. Thus, plant equipment is only serviced when it is

defective [43].

Although preventive and predictive maintenance may appear to be similar, they

differ significantly in the way they are performed. Preventive maintenance is usually

done after a certain period of time, determined from historical data. As for pre-

dictive maintenance, it is done in response to an abnormal reading on a monitoring

device [35]. Both types of maintenance contribute to reduce equipment breakdown

and increase plant equipment life. Furthermore, preventive maintenance is normally

performed periodically, in contrast to predictive maintenance [23, 33, 43].
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Reactive maintenance is usually performed in response to a failure of plant equip-

ment. During reactive maintenance, temporary repairs/adjustments may be done to

minimize equipment downtime, while permanent repairs are postponed [20]. Accord-

ing to [45], maintenance manpower and the resources expended to keep the manufac-

turing plant running are minimized with reactive maintenance. Unfortunately, one

cannot overlook the fact that reactive maintenance leads to unpredictable and fluc-

tuating production capacity, as well as, an increase in the overall maintenance costs

to repair tremendous failures [4, 20].

Finally, aggressive maintenance strategies, such as Total Productive Maintenance

(TPM) do not only try to avoid machine failures, but also aim to enhance over-

all equipment operation. TPM was developed by Japanese manufacturing plants

to improve various manufacturing aspects including product quality. It focuses on

eliminating the ”six major losses” listed below [43]:

• equipment failure

• set-up and adjustment time

• idling and minor stoppages

• reduced speed

• defects in process

• reduced yield.
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1.2.3 The Maintenance-Quality Link

The relationship between maintenance and quality has been an active topic of debate

for some time. Some benchmarking studies have been published in [18] and [50] which

indicated that there was no direct relationship between maintenance and quality

enhancement. In general. however, it is currently well-established in the literature

that performing maintenance on plant equipment has a significant effect on product

quality. In [27], the author states that equipment reliability and maintenance have

a significant effect on quality. Other studies such as [22, 24, 32, 49], indicate that

implementing various maintenance strategies such as TPM improved manufacturers’

competitiveness and led to better overall results.

Table 1.1: Results of regression analysis of maintenance strategies on mainte-
nance performancea [43].

Independent Variables Coefficient of Improvement of Product Quality
Aggressive Maintenance 0.253d

(0.066)
Proactive Maintenance 0.194c

(0.065)
Reactive Maintenance -0.112b

(0.037)
aStandard errors are in parentheses, bp < 0.10, cp < 0.01, and dp < 0.001.

In [43], the author attempts to prove that there is a relationship between mainte-

nance and quality. The author does this by surveying several plants on their mainte-

nance management policies. The maintenance manager and production manager at

each plant were sent a survey and asked to report on the operating characteristics

of their plants. Out of the 708 surveys sent to 354 plants, 125 plant managers and

162 maintenance managers responded. Performance was measured by asking the re-

spondents to indicate the effect of maintenance on improvements in product quality
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using a five-point Likert-type scale (1 = less than 20% of quality improvement was

the result of maintenance efforts, 5 = more than 80% of quality improvement was due

to maintenance).

Table 1.1 reports the results of regression with contribution to improvement in

product quality as the dependent variable with regards to the different types of main-

tenance performed. In this table, for each type of maintenance, the coefficient of

the dependent variable is given in the second column with its standard error given

in brackets underneath. For aggressive maintenance, the results obtained show that

the coefficient of improvement of product quality is a positive one, which means that

aggressive maintenance has a positive relationship with product quality. Similarly,

proactive maintenance has a significant, positive relationship with product quality,

since its coefficient is also a positive one. On the other hand, for reactive mainte-

nance, the coefficient of improvement of product quality is a slightly negative one,

which indicates that reactive maintenance has a less significant, negative relationship

with product quality. According to [43], these results are in agreement with published

results. Whether a given type of maintenance has a positive impact, or not, it would

appear that a relationship between maintenance and quality exists.

Additionally, the p-value is shown for each coefficient reported in Tab. 1.1. This

value tells you the probability of the reported coefficient coming up in a random

distribution. For example, there is only a 0.1% chance that the result obtained for

the coefficient of improvement of product quality for aggressive maintenance came up

in random distribution, i.e. one can say with a 99.9% probability of being correct that

the independent variable (aggressive maintenance) is having some effect, assuming the

model is specified correctly.
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Furthermore, the authors state in [8] that a relationship between maintenance and

quality does exist, but more adequate models are yet to be developed. Manufacturing

plants are often successful in retrieving data about plant maintenance and product

quality. Attempts to relate maintenance data to quality data through a mathematical

model have failed. According to [8], there are three possible reasons for this:

• Only recently have manufacturers realized the importance of maintenance and

its link to profitability.

• The relationship between maintenance and other functions in an organization

is a complex one.

• Outputs of the maintenance department are difficult to define and therefore,

linking input and output is even more difficult.

In [8], the authors manage to reveal the relationship between maintenance and

quality and underline its importance. They propose a general framework by which the

link between maintenance and quality can be obtained and incorporated into produc-

tion. Figure 1.1 shows how maintenance, quality and production interact. Production

has two outputs; a primary output and a secondary output, which is maintenance.

From this figure, one can see that production affects quality and equipment conditions

are affected by maintenance which, in turn, affects the quality of the overall prod-

uct. The authors of [8] proposed the following ideas to relate maintenance and quality.
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Figure 1.1: Production, quality and maintenance dependencies [8]

Models using Imperfect Maintenance Concepts

Preventive maintenance is a diagnostic type of maintenance performed to keep

plant equipment in nearly perfect condition. Most existing preventive maintenance

models assume that the condition of plant equipment goes back to its original condi-

tion when preventive maintenance is performed. However, this is not true. In reality,

equipment condition deteriorates with time and does not return to its original condi-

tion no matter how good the maintenance program is. Therefore in [8], the authors

propose another dimension to existing preventive maintenance models by adding the

imperfect maintenance concept (IMC). IMC basically takes into account the dete-

rioration of plant equipment conditions with respect to time, which in turn affects

the scheduling of quality control inspections. Using this modeling idea, the authors

of [5, 6, 7] are able to determine a relationship between preventive maintenance and

quality-related costs.
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Models using the Taguchi Approach

According to [8], Taguchi defines quality as “the loss incurred owing to deviation

of product characteristics from their target values.” This deviation is measured using

a quadratic loss function. The Taguchi approach performs preventive maintenance as

soon as the deviation goes below a certain threshold, thereby reducing the divergence

away from the target levels and improving quality [8, 44].

Previous research has confirmed that a relationship between maintenance and

quality does exist, but unfortunately, few researchers have tried to find a mathemat-

ical formulation for it. The authors of [8] were able to determine how maintenance

scheduling affects quality, but a direct maintenance-quality mathematical formula-

tion was not obtained. Hence, more research is needed in this area of manufacturing

systems’ quality and the effect of maintenance. In this thesis, an alternative way

to identify correlations between independent maintenance and quality data sets in a

manufacturing environment is proposed, thus, attempting to fill the gap that exists

in this field of research.

1.3 Outline of Thesis

In this thesis, we exploit the flexibility of hybrid system models to develop a compre-

hensive understanding of manufacturing process quality. In addition, the design of a

supervisory control architecture will be considered using modeling approaches such

as SFM and CFM based representations that are tailored to the analysis of manu-

facturing systems. One of the objectives of this research is to study the dynamics

of manufacturing systems using a SFM-based hybrid system modeling paradigm. In

this formulation, key manufacturing events such as blockage, breakdown, working,
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repair, etc... trigger changes in the dynamics of key states that monitor product flow,

resource allocation and maintenance applications. In contrast to previous work where

the dynamics of these states was primarily modeled using delays, the current project

focuses on the use of SFM and CFM to model the state dynamics that indicate the

quality level of the manufacturing system.

This modeling approach, which has been recently investigated [3] in the context

of manufacturing systems, provides an effective platform to incorporate other com-

mon objectives in addition to quality such as throughput optimization and resource

allocation subject to stochastic fluctuations. Furthermore, this work considers the val-

idation of dynamical models of manufacturing systems using CFM/SFM-based hybrid

models that are compared to quality data from a real operational manufacturing line.

Once a validated model is obtained, the research focuses on maintenance and its

effects on quality. More specifically, we propose a mathematical formulation that can

identify correlations between independent sets of maintenance and manufacturing

quality data.

In chapter 4, some quality definitions are introduced. Quality is defined as the

ability of a station to process parts while minimizing the number of parts that get

rejected. Two methods for calculating production quality are proposed and their

effects on maintenance are examined. The first method is based on the calculation

of a production station’s quality over a certain time interval. This is then followed

by an example using real manufacturing data to demonstrate how a station’s quality

is affected by maintenance. A Kalman filter is used to estimate production quality

to provide an alternative production quality calculation method and the results are

then discussed.
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In chapter 6, a novel quality definition that incorporates maintenance detection

into the quality calculation is introduced and its results are discussed. This is fol-

lowed by a brief analysis and discussion of modeling approaches for plant ageing and

maintenance. A summary of the conclusions and future work is presented in chapter

8.



Chapter 2

Manufacturing Line Flow and

Quality Models

2.1 System Model

2.1.1 Single-Product Type SFM Model

In this work, the development of a dynamic model of manufacturing system quality is

based on a stochastic flow model (SFM) of each station for an assembly line of auto-

motive engines. The SFM uses information about the probability of the occurrences

of reject codes for each engine model type and each production shift to compute the

number of rejects on the line for any given period of time. Figure 2.1 shows a single-

station discrete SFM, where u(t) (parts/sec) is the rate of parts entering the station

while v(t) (parts/sec) is the output rate which is equal to the production rate ρ(t) at

which the station is able to produce parts. The buffer size is given by xb(t) (parts).

15



CHAPTER 2. MANUFACTURING LINE FLOW AND QUALITY MODELS 16

Disturbances

� �tu � �tv� �txb

� � ^ 1̀0,ts �
0

1

Station

Disturbances

� �tu � �tv� �txb

� � ^ 1̀0,ts �
0

1

0

1

Station

Figure 2.1: Stochastic flow model (SFM)

Note that the station switches between two states, 0 (OFF) or 1 (ON), such that:

s(t) =





1 machine working

0 otherwise
(2.1)

where s(t) denotes the operational state of the system.

The working and non-working states are triggered by random events that cause

the station to change its current state. More elaborate logical statements may also

be considered in practice.

The rate of parts entering the station, u(t), is determined by production planning

and scheduling. The rate at which the station produces parts, v(t), is a more complex

function of processing conditions. A simple rule-based operational constraint for the

output rate:

v(t) =





0 if s(t) = 0 or xb(t) = 0

ρ(t) otherwise
(2.2)

where the buffer content xb(t) is determined by the following ordinary differential
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equation:

ẋb(t) = u(t)− v(t) (2.3)

At each station, the total number of rejects is calculated using the following ordinary

differential equation:

ẋr(t) = ∆(t)δ(t) (2.4)

where xr is the number of rejects (with initial conditions xr(0) = 0), δ(t) is a unit

impulse.

Before defining the function ∆(t), some additional definitions must be introduced.

First, a parameter, called λ, is introduced to represent the average rate of engines

produced between the occurrence of two rejects. The estimation of this parameter is

obtained using historical data with an algorithm presented in section 2.2. As shown

in Figure 2.2, historical data fits an exponential distribution E(λ).

Following the definition of the reject occurrence distribution, a threshold th must

be introduced to isolate the reject probabilities from the non-reject probabilities. The

exponential distribution E(λ) has a probability density function fE(λ)(t) = λe−λt.

From the definition of the density function, the integral of fE(λ)(t) from the lim-

its 0 to ∞ is equal to 1 (100 %), but there is also 100
λ

% that corresponds to the

reject rate and thus
(
100− 100

λ

)
% for the non-reject rate. The boundary between

these two modes (reject and non-reject) is defined by the threshold th. In other

words, this threshold, deduced from the exponential distribution E(λ), is defined by
∫ th

0
fE(λ)(t)dt = 1

λ
, where the solution of this equation yields an expression for th:

th = −1

λ
ln

(
λ− 1

λ

)
(2.5)
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Figure 2.2: Exponential distribution fitting of aggregate occurrences of rejects

From the exponential distribution E(λ), a random sample, called tλ, is obtained for

each engine exiting the work station. This sample is compared to the reject threshold

th defined above. If the sample tλ is under the threshold when the engine exits the

station, then a reject flag is given to the engine. Finally, the function ∆(t) which

generates rejects on the station is defined by:

∆(t) =





1 if v(t) 6= 0 and tλ ≤ th

0 otherwise, i.e.: no reject
(2.6)

This type of model, described above, can be used to provide high-level abstractions

of discrete event systems. Rejects are generated by impulse functions using the value
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of the sample tλ compared to the threshold. The same abstraction is done with the

output flow modeling v(t).

2.1.2 Five Station Manufacturing System

As the manufacturing system grows in size, it becomes more complex and modifica-

tions to the model are required. This section examines an example represented by

a slightly more complex five-station system that is still simple enough to describe,

yet represents a realistic production line configuration (Figure 2.3), where the mod-

eling approach follows that of the previous section. Each station is indexed by i with

i ∈ {1, 2, ..., 5} and the relation vi = ui+1 is used to link stations.

Figure 2.3: Simple five-station SFM quality system

However, this five-station model introduces a further complication with the intro-

duction of a parallel station which measures quality (station S4 in Figure 2.3). Thus,

in Figure 2.3, stations S1 and S5 are defined as processing stations, stations S2 and S3

are control stations and finally, station S4 is a quality station Q1. Products can move

from one station to the next (for example, from S1 to S2). But, in some instances,

as at the exit of station S3, two paths are possible. From S3, engines can be directed



CHAPTER 2. MANUFACTURING LINE FLOW AND QUALITY MODELS 20

to S4 or station S5. If the product has not triggered a quality reject before station

S3, this product goes to station S5. If a reject has occurred, the product must be

repaired, and is therefore sent to station S4. In station S4, the problem identified

with the engine at station S3 is repaired. The product then returns to station S2 to

be processed and diagnosed a second time. To complete the model, new definitions

are required to generalize Equations (2.1) to (2.5).

A set Li is defined as the set of all stations linked with the input of station i, for

example in Figure 2.3, L2 = {S1, S4}. The input ui of the station i can be defined as:

ui(t) =
∑

l∈Li

bl,i(t)vl(t) (2.7)

where bl,i is a Boolean function (with the property
∑

i bl,i = 1) that determines in

which line the product is produced from station l to station i. In Figure 2.3, two

choices are possible after station S3. For example, if the product must be repaired

then b3,4(t) = 1 and b3,5(t) = 0.

2.1.3 Complete Manufacturing System Model

The previous section provided definitions for the modeling of all controlling stations

and associated variables in the system. However, the product type and the production

shift were not taken into account, and therefore, further variables need to be defined

to represent the dynamics of the system before defining an entire manufacturing line.

The above five-station model is now extended to a generalized model of a complete

manufacturing system.

A product is defined by a unique number p (such as a unique serial number).

This product identification number belongs to a product type j defined by j = J (p)

where J is a function that gives the engine model type j of an engine that has a
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unique product number p. A production shift is defined by a number k and defined

by k = K(t) where K is a function of time.

In this section, the model of the entire manufacturing line is developed for all

possible configurations (i, j, k), meaning for each station i ∈ I = {stations in the

manufacturing line having rejects}, for each product type j ∈ J = {product type}
and each shift k ∈ K = {production shift}.

The same functions, as defined previously in Equations (2.1) to (2.5) can be defined

for all configurations (i, j, k){i∈I,j∈J,k∈K}. Functions si,j,k(t), vi,j,k(t), etc... are also

defined. In this work, the SFM dynamics of the entire manufacturing line is defined

as a hybrid stochastic system for each specific station i ∈ I, and the equations of

the operating state si, the output rate vi and the derivative of the buffer content are

given by:

si(t) = si,j,k(t)

=





1 if a product is made in station i

0 otherwise
(2.8)

vi(t) = vi,j,k(t)

=





0 if si(t) = 0 or xbi
(t) = 0

ρi,j,k(t) otherwise
(2.9)

ẋbi
(t) = ui(t)− vi(t) (2.10)

where the input ui is defined by Equation (2.7).
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Before defining the ordinary differential equation of xri
(t), the reject function must

be defined for each product as:

Ṙp(t) =





1 if vi,j,k(t) 6= 0 and tλi,j,k
≤ thi,j,k

0 otherwise
(2.11)

where the variable tλi,j,k
is a random variable with an exponential distribution E(λi,j,k)

having a parameter λi,j,k defined for station i, product type j, shift k. The variable

thi,j,k is a threshold extracted from E(λi,j,k) as explained in Equation (2.5).

The function of the total number of rejects at station i xri
(t) is given by:

ẋri
(t) = Ṙp(t)δ(t) (2.12)

where xri
is the number of rejects at station i (with initial conditions xri

(0) = 0).

When product p exits the last station of the manufacturing line, a reject index

function gives:

Ẋr(t) =





1 if Rp(t) 6= 0,

0 otherwise.
(2.13)

2.2 Distribution Fitting

In the previous sections, λi,j,k parameters were simply stated without description of

how these values may be obtained. In this section, the estimation of these parameters

is explained.

2.2.1 Static approach

Assumption 2.2.1. At any given time t, the set of all rejects and the corresponding

production scheduling data provide a set RNi,j,k
= {ri,j,k

1 , ri,j,k
2 , . . . , ri,j,k

Ni,j,k
} of Ni,j,k
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independent observations of the number of products between two rejects.

An estimation of the average rate of rejects among all products can be obtained by

maximizing the likelihood function. The likelihood function is the joint probability

density function after substitution of the available observations:

L(λi,j,k|RNi,j,k
) =

Ni,j,k∏
m=1

λi,j,ke
−λi,j,kri,j,k

m . (2.14)

Since the logarithm function is monotonic, to maximize the likelihood function or

the logarithmic likelihood function is identical. The logarithmic likelihood function

is given by:

Λ(λi,j,k|RNi,j,k
) = ln(L(λi,j,k|RNi,j,k

)

= Ni,j,k ln(λi,j,k)− λi,j,k

Ni,j,k∑
m=1

ri,j,k
m . (2.15)

To find an estimation λ̂i,j,k that maximizes the function Λ, a necessary condition is

that the gradient of Λ with respect to λi,j,k becomes zero, ∂Λ
∂λi,j,k

= 0. The derivative

of the previous equation with respect to λi,j,k yields:

∂Λ(λi,j,k|RNi,j,k
)

∂λi,j,k

=
Ni,j,k

λi,j,k

−
Ni,j,k∑
m=1

ri,j,k
m (2.16)

The expected value is given by ENi,j,k
[ri,j,k] = 1

Ni,j,k

Ni,j,k∑
m=1

ri,j,k
m , so the estimation value

is:

λ̂i,j,k =
1

ENi,j,k
[ri,j,k]

(2.17)

In Equation (2.11), the variable tλi,j,k
is a random variable that belongs to the λi,j,k

exponential distribution: tλi,j,k
∝ E(λi,j,k).
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2.2.2 Adaptive Approach

An estimation that takes into account the most recent reject data cannot be performed

adequately with the mean estimation scheme described above. For this reason, the

mean estimation has a strong filtering behavior as the size of the sample data in-

creases (see dashed plots on Figures 2.4 and 2.5). Filtering conceals non-stationary

events or changes in the mean value that may be important in the assessment of a

control strategy and the analysis of process dynamics. In this section, an adaptive

estimation algorithm is described to avoid this filtering problem, which can track

non-stationary events in rejected data measurements ri,j,k with an adaptation of the

filtering smoothness. For more explanation about the proposed algorithm, readers

can refer to [16].

Obviously, when the entire manufacturing line is taken into account, the parameter

λ depends on station i, engine j and shift k. Formally, we denote the dependence of

λ on i, j and k as λ(i, j, k) = λi,j,k. The same notation is used for r(i, j, k) = ri,j,k.

First, we introduce a constant M ∈ N+ which corresponds to the length of the

data window (M is the memory length given to the estimation, the greater M is, the

smoother the estimations are). Next, define γ̄ ∈ (0, 1] as the upper bound of step

estimations γ∗n where γ̄ is the greatest step that is possible to give to γ∗n estimations.

We also define ∆ ∈ [0, +∞) as the acceptable error range for the iterates λn, α ∈ (0, 1]

as the error probability for the standard normal distribution and z1−α as the associated

percentile. Then, µ ∈ (0, 1] is introduced as the λn estimation weight. To begin the

adaptive approach, we first set n = 1, and the initial condition of new observation

gain γ1 ∈ (0, γ̄]. The approach is then described by the following six steps:
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1. Generate the normalized iteration value

λ̃n(i, j, k) =
λn(i, j, k)√
γn(i, j, k)

. (2.18)

2. If the number of iterations n is an integer multiple of M , perform steps 3 and 4,

otherwise, set γn+1(i, j, k) = γn(i, j, k) and proceed directly to step 5.

3. Calculate the normalized sample mean

λ̃mean
n (i, j, k) =

1

M

n∑
m=n−M+1

λ̃m(i, j, k) (2.19)

and normalized sample variance

κ̂n =
1

M − 1

n∑
m=n−M+1

(
λ̃m(i, j, k)− λmean

n (i, j, k)
)2

. (2.20)

4. Calculate the dynamic part of the step value at iteration n

γ̂∗n = min

(
γ̄,

∆2

z2
1−ακ̂n

)
, (2.21)

and update:

γn+1(i, j, k) = (1− µ)γn(i, j, k) + µγ̂∗n. (2.22)

where µ denotes the weight given to the γn+1(i, j, k) estimation, the closer µ

is to 0, the smoother the estimations are, conversely, the closer µ is to 1, the

greater the amount of importance given to (γ̂∗n) is.

5. Finally, calculate

λn+1(i, j, k) = λn(i, j, k) + γn(i, j, k)rn(i, j, k). (2.23)
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6. Set n = n + 1 and repeat from step 1.

This algorithm is a step-by-step algorithm. The estimation of parameter λi,j,k

is updated with the actual reject rate rn(i, j, k) when a new reject occurs for the

configuration (i, j, k).

In the above algorithm, the variable n (iteration number) is not taken as a global

variable for every configuration (i, j, k). The variable n should be defined locally as

n(i, j, k). For the remainder of this chapter, it is written as n to ease readability.

2.2.3 Estimation strategy

As mentioned above, the maximum likelihood approach provides a simple method

to estimate λ (see section 2.2.1)that is based on the mean reject rate calculation.

The main drawback of the method is that the parameter estimation dynamics are

dampened as the amount of data increases and therefore, the adaptive approach is

proposed as an alternative. By construction, this alternative estimation of λ cannot

be implemented when the number of rejects is less than the constant M . For this

reason, both methods are combined. As a result, the likelihood estimation algorithm

is utilized when the number of rejects is less than the window size M and the adaptive

algorithm is used when the number of rejects is sufficiently large (greater than or equal

to M). The resulting strategy provides a novel alternative to existing techniques that

is suitable for the assessment of manufacturing quality of a system modeled by a SFM

approach.
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2.2.4 Comparison

This section provides comparison results between various approaches to estimate the

parameter λi,j,k. Results are shown in Figures 2.4 and 2.5 for different parameter

values of the adaptive approach.
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Figures 2.4 and 2.5 show the λi,j,k estimations as a function of the number of

rejects using the approach described in section 2.2.3. These two figures show the

estimation evolution for a specific 3-tuple (i, j, k), the same evolution is observed

with other 3-tuples.

In Figure 2.4, different estimation evolutions are compared for different values of

the parameter µ. This smoothing factor µ defined in Equation (2.22) gives less noisy

estimations, and in Figure 2.4 several values are given to µ to show the estimation

smoothness. As µ approaches 1, the estimations become smoother, and the opposite

occurs when µ approaches 0. These estimations are compared to the static approach

estimations and to a sliding window mean estimation. The sliding window approach
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provides a better detection of changes in parameter values. It does that by calculation

parameter estimates with the same weight M . The window moves with time and after

M rejects are detected, the parameters are estimated.

The estimations for the adaptive approach gives better results than the mean

estimation approaches (see Figures 2.4 and 2.5). With only a window size equal

to 10, the adaptive approach estimations are more filtered than with the sliding

window mean estimation approach,which has a window size of 50. Furthermore,

the estimations done using the adaptive approach are less smooth than the mean

estimation using the static approach (mean estimation).

In Figure 2.5, the aim is to compare the estimations done with the adaptive

approach, using different window lengths M , to estimations done with the static

approach (mean estimations with or without a sliding window). Figure 2.5 shows

that the smaller M is, the faster the estimation is performed, conversely the opposite

occurs when M is bigger. For the same reasons given for Figure 2.4, the estimations

done with the adaptive approach are better.

Several simulations indicated that the choice of µ and M parameters are impor-

tant. For this study the optimal choice for µ and M are 0.9 and 10, respectively,

which results in the optimal value of first time quality.

2.3 First Time Quality Index

The purpose of the model is to devise a control scheme that can respond to fluctuations

in quality that occur in a manufacturing line. Quality in manufacturing lines is usually

monitored by elaborate sensor-based and/or person-based fault detection controls.

The counting of rejects provides an effective measure of quality.
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Therefore, this measure of quality is the percentage of parts that exit the station

without rejects. If N is the number of the last station of the entire manufacturing

line, the measure called first time quality (FTQ) is given by:

FTQ(t) =

∫ t

0
vN(τ)dτ − ∫ t

0
Ẋr(τ)dτ∫ t

0
vN(t)dτ

× 100 (2.24)

2.4 Model Computation

2.4.1 Distribution Parameter Estimation

The simulation of the entire manufacturing line and the calculation of the first time

quality as given by Equation (4.1) are done using the estimation of the average reject

time λi,j,k. This estimation uses actual data from the assembly line and historical

reject data. The λi,j,k-estimation is done off-line using a set of representative data from

the engine assembly line. The adaptive estimation algorithm allows one to change

λi,j,k in real-time to adjust for potential changes in line conditions or to incorporate

data from new stations or new engines that were not represented in the past data.

As previously described, initial conditions and parameter values are required to

use the estimation program. The choice of these constants can affect the performance

of the estimation program. For the purpose of simulation and model validation, the

following values were chosen: M = 20, γ̄ = 0.8, ∆ = 0.3, α = 5% (the value of

the percentile z1−α is 1.96), µ = 0.9 and γ1 = 0.3. This initial set of parameters

is assumed to be the same for every station, every product (here engine) type and

every production shift. However, it is possible to tailor the initial conditions and the

parameters of this algorithm to every configuration. In this way, the smoothness of

the λi,j,k estimations can be altered to provide more or less dampening as required.
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The amount of historical data needed to extract an accurate estimation of the

λ-parameter is difficult to estimate because it depends on each configuration (i, j, k).

However, a minimum of two rejects in the same configuration are needed to begin the

λ-parameter estimation algorithm for a specific configuration. Due to the adaptive

component of the algorithm, a convergence is observed if the reject rate is stable,

otherwise it will depend on the value of the initial parameters (M ,γ̄, ∆, z1−α, µ

and γ1 - see Figure 2.4 or 2.5). Sufficient conditions do not exist that exhibit the

convergence of λ-parameters, due to the adaptive aspect of the algorithm.

2.4.2 Simulation Description

Once the distribution parameter is estimated for every reject code recorded in a man-

ufacturing quality database, a simulation of the FTQ index can then be performed.

The simulation of the assembly line can be decomposed into several sections. Each

section is decomposed in three main parts: inline, control and quality loop stations

(see Figure 2.3).

To start the simulation, engines are sent to the buffer before the first station of the

line. From here, an engine moves through the assembly line from station to station.

At each station, a random sample tλi,j,k
is compared to the threshold thi,j,k. The

probability that the random sample belongs to the reject zone is equal to 1
λi,j,k

. If

the sample is associated to a reject, the engine is labeled with a reject flag otherwise

no flag is created. When an engine exits the last station of the control line, without

having generated a reject then the engine is sent to the next section or exits the entire

manufacturing line. But, if the engine is labeled with a reject flag (the engine has had

a reject in the current section), the engine is sent to the quality loop to be repaired.
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When the engine is repaired, it re-enters the control line without any reject flag, but

the engine is still labeled as an engine that has had a reject. This label cannot be

changed since it affects FTQ.

When an engine exits the entire manufacturing line, it has no reject and the

integral of vN is incremented by one unit. However, if the engine has been flagged

as an engine that has had a reject, then the variable Xr is incremented by one. The

FTQ index is updated according to Equation (2.24).

2.5 Summary

In this chapter, a dynamic model of manufacturing system quality based on the SFM

approach was introduced. Initially, a single-product type SFM model was discussed

and then extended to a multi-station system. Static and adaptive parameter esti-

mation approaches were also discussed and their performance was assessed. Finally,

a quality measure, FTQ, was developed to estimate the quality of manufacturing

systems.



Chapter 3

Results: FTQ Simulation

In this chapter, the accuracy of the SFM approach is examined. The SFM approach

is initially used to estimate the FTQ for a single configuration and then used to

estimate the FTQ of a system that incorporates some hybrid modeling aspects. For

each estimation, two examples generated from real manufacturing data are discussed.

3.1 FTQ Estimation for single configuration

Before discussing the FTQ simulation results of the hybrid modeling aspects, we first

examine the model’s accuracy using simulation results. Accuracy here is defined as the

difference between the expected value and the simulated value. A process is simulated

using typical distributional information. The ability of the FTQ estimation scheme to

recover the known distribution parameters and FTQ results is examined. The SFM

model for FTQ estimations is performed on a single configuration for N=83 stations.

An exhaustive comparison is computationally prohibitive due to the large number of

possible combinations of configurations (32 engine types, 3 shifts, 83 stations). From

33
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Figure 3.1: Comparison for the three shifts of FTQ estimated by the SFM approach
and the expected value for engine type 10
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this point of view, two cases are presented with two different quality levels. These

two cases are illustrated respectively in Figures 3.1 and 3.2 along with results for the

three corresponding production shifts.

In Figures 3.1 and 3.2, the FTQ simulation is compared to the expected value.

Note that between the interval 0h to 1h30 the FTQ estimation equals 0 because no

engines exit the line. After the instant 2h30 or 3h, the estimation convergence is

visible. In Figure 3.2, the accuracy of the SFM model is striking and the bias with

the expected value is quite small, especially with the second shift. The errors between

the estimations and the expected values are smaller than 3%.

Expected values of all configurations can be used to give an idea of the global

quality for each configuration. These expected values are given in Figure 3.3.
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Figure 3.3: FTQ expected value for all configurations
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3.2 FTQ Simulation with Hybrid Modeling As-

pects

Hybrid control systems are those that involve continuous-time dynamics and discrete-

event behavior and require controllers that may also have mixed continuous and dis-

crete dynamics [2, 10]. Clearly, all the possible combinations of discrete states cannot

be studied and illustrated in this work. The number of all switching combinations is

equal to 9120 (96 ∗ 95) for a single station. In this section, the number of stations is

N = 83. Only two examples are discussed with 7 and 5 different discrete states for

the first station corresponding to the first and second examples respectively.

The goal is to show with two examples the accuracy of the SFM approach while

taking into account hybrid modeling aspects of the system, such as changes in product

types and production shifts. In the following results, the estimation of the FTQ by

the SFM model is compared to the FTQ index calculated from the historical data

(processed engines and repaired engines stored in the database).

3.2.1 Example 1

For the first example, data from the first station of the historical data set are used

as input to the simulation. The first engine enters the line at time instant t0 = 0.

The simulation duration is approximately 16 hours. Figure 3.4 illustrates the mode

evolution on the first station where 7 discrete states, called modes, are defined. Each

mode shows what product-type is being processed at the station and which shift is

on duty.



CHAPTER 3. RESULTS: FTQ SIMULATION 37

Figure 3.4: Mode evolution for the first station

An initial first simulation of FTQ is illustrated in Figure 3.5. The results obtained

are close to the actual value of FTQ. Since the calculation of FTQ is based on an

average calculation, the initial FTQ values oscillate but convergence is observed after

6 hours. The relative mean error (RME) between the observed FTQ and the value

calculated from the SFM is less than 2% after t = 6.5h and less than 1% after t = 10h.

Relative mean error here is calculated as:

RME =
FTQsim − FTQdata

FTQdata

(3.1)

The calculation of FTQ is based on statistical properties that give a random

component to the FTQ estimation. If several estimations are performed (see Figures

3.5 or 3.7), the results will not be exactly the same, even if the parameters are the same

in these different simulations. These differences are due to the statistical properties of

the SFM simulator. Figure 3.5 shows different results of simulations where the actual

FTQ value is accurately predicted by the SFM model. The estimation convergence is
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Figure 3.5: Comparison of several FTQ estimations done by the SFM approach and
FTQ calculated from the historical data

seen after t = 6h. The largest errors are observed (Figure 3.5) before this convergence

and do not exceed 10% between t = 2.5h and t = 6h. These various results indicate

good performance of the stochastic flow model, because after t = 6.5h the relative

mean error does not exceed 2% and still decreases with time.

3.2.2 Example 2

For the second example, a different day is picked from the data set. The simulation

duration is 10 hours. Figure 3.6 illustrates the mode evolution on the first station

where 5 modes are defined.
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Figure 3.6: Mode evolution for the first station

In this second example, the comparison between the estimation of the FTQ by the

SFM model and the FTQ index calculated from the historical data is extended to the

comparison with the expected value of the FTQ defined over all stations (expected

quality intervals are plotted corresponding to a [99%, 101%]-confidence interval and

a [95%, 105%]-confidence interval (CI). The results are illustrated in Figure 3.7.

Figure 3.7 shows the expected value of the FTQ, confidence intervals, the FTQ

calculation from the historical data and 10 simulation results. In this example, the

accuracy of the SFM algorithm is clearly visible because after the instant t = 2.5h

all estimations are included in the 5%-error confidence interval. Except for one sim-

ulation in which values are high, all simulations converge to the expected value after

t = 9h. After the instant t = 5h, 50% of simulations are found within the 1%-error

confidence interval. Therefore, the results in both examples demonstrate that the

SFM model provides a very accurate prediction of the FTQ of the assembly line.
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Figure 3.7: Comparison of several FTQ estimations done by the SFM approach and
FTQ calculated from the historical data and FTQ expected value

3.3 Summary

Some very encouraging results were obtained from the FTQ estimation simulation for

both the single configuration and hybrid systems. In the case of the FTQ estimation

for the single configuration, the estimation convergence is very obvious after about 3

hours of simulation and the accuracy of the SFM approach is evident. The results

obtained from the FTQ simulation with hybrid modeling aspects incorporated also

confirmed the accuracy of the SFM approach.



Chapter 4

Quality Definitions

In the following chapters, we focus on the identification of the possible correlations

between independent sets of maintenance and manufacturing quality data. We first

propose some alternative quality definitions used in further developments in the re-

mainder of this thesis. FTQ,introduced previously, will be re-introduced in the fol-

lowing section with slightly modified variables to ease comparison with other quality

definitions in the following sections.

4.1 Basic Definitions

Definition 4.1.1. First Time Quality or FTQ refers to a quality index over the entire

manufacturing line. More precisely, it is the ratio of parts going through the entire

manufacturing line without any rejects, over the total number of parts. This ratio is

calculated from an initial time instant t0 = 0 to time t.

41
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FTQ(t) =

∫ t

0
vn(s)ds− ∫ t

0
r(s)ds∫ t

0
vn(s)ds

(4.1)

= 1−
∫ t

0
r(s)ds∫ t

0
vn(s)ds

(4.2)

where FTQ(t) is the First Time Quality at time t using the output function vn(s) and

reject function r(s) over the interval [0,t] and n is the number of the last station of

the entire manufacturing line. vn(t)=1 if a part exits a station and 0 otherwise. If a

reject is detected at any station, r(t)=1, otherwise r(t)=0.

Definition 4.1.2. Station Quality Index or SQIi is the quality index of a particular

station i. SQIi is the ratio of parts leaving station i without being rejected over the

total number of parts leaving station i. This ratio is calculated from an initial time

index t0 = 0 to time t.

SQIi(t) =

∫ t

0
vi(s)ds− ∫ t

0
ri(s)ds∫ t

0
vi(s)ds

(4.3)

= 1−
∫ t

0
ri(s)ds∫ t

0
vi(s)ds

(4.4)

where SQIi(t) is the Station Quality Index of station i at time t using the output

function vi(s) and reject function ri(s) over the interval [0,t]. vi(t)=1 if a part exits

station i and 0 otherwise. If a reject is detected at station i, ri(t)=1, otherwise

ri(t)=0.

Therefore, to summarize the previous two definitions; FTQ is a global quality,

based on the entire manufacturing line, whereas SQIi is a local quality, referring to a

specific station.
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4.2 Sliding Window Approach

Equations (4.2) and (4.4) produce quality estimations that tend to become constant

after a certain number of observation data is processed. For a better detection of

changes in quality of the produced parts, a method that provides quality estimates

with the same weight N is proposed. The window moves with the current process-

time. Therefore, after a certain number of parts N is reached, FTQ is calculated

using a more dynamic, sliding window approach, defined as sliding FTQ or sFTQ.

Definition 4.2.1. Sliding FTQ or sFTQ calculates the first time quality of the parts

produced over a fixed window of size N , where N is the number of parts. N is used

instead of time. Since time does not take into account production breaks, it would

provide less accurate results. sFTQ is defined as follows:

sFTQ(m) =

m− (m−N + 1) + 1−
m∑

n=m−N+1

r(n)

m− (m−N + 1) + 1
(4.5)

=

N −
m∑

n=m−N+1

r(n)

N
(4.6)

= 1−

m∑
n=m−N+1

r(n)

N
(4.7)

where N is the fixed number of parts going through the station that is taken into

account or the size of the sliding window, m is the number of parts at time t after

an initial time t0 = 0 and
m∑

n=m−N+1

r(n) is the total number of parts exiting the
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manufacturing line that have had at least one reject over the line. Thus, the FTQ is

calculated using the sliding window approach only when m ≥ N .

Similarly, a sliding SQIi or sSQIi technique is adopted after N parts pass through

station i.

sSQIi(m) = 1−

m∑
n=m−N+1

ri(n)

N
(4.8)

where N is the fixed number of parts taken into account or the size of the sliding

window, m is the number of parts that passed through a particular station i after

an initial time t0 = 0 and
m∑

n=m−N+1

ri(n) is the number of parts that are rejected at

station i during production. Therefore as soon as m ≥ N , the SQIi is calculated

using the sliding window approach.

4.3 Instantaneous SQI

In the previous sections, FTQ, SQIi, sFTQ and sSQIi were defined. All four of

these quality measures can be calculated from the data set provided for this study.

Furthermore, SQIi can be seen as the mean of the instantaneous quality, qi. Given

equation (4.4), the derivation of this observation is evident:

Qi(t) = SQIi(t) =
1

t

∫ t

0

qi(s)ds (4.9)

Q̇i(t) = − 1

t2

∫ t

0

qi(s)ds +
1

t

∫ t

0

qi(s)ds

= −1

t
Qi(t) +

1

t
qi(t) (4.10)
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then,
qi(t) = tQ̇i(t) + Qi(t) (4.11)

4.4 Classifying Different Maintenance Work Types

Different manufacturers have different names for various maintenance work types.

These maintenance types range from the routine preventive-type maintenance to more

urgent emergency maintenance. In this study, the data set contains six types of

maintenance work types as shown in Tab.4.1.

Table 4.1: Maintenance work types.
Symbol Work Type

CTI Continuous/Throughput Improve
DC Down Check

EMR Emergency Maintenance/Repairs
PFB Preventive - Frequency Based
RC Running Check
SRP Scheduled Repair

The six maintenance work types are grouped together depending on the nature of

the maintenance type. For example, CTI and RC are considered to be regular, routine

maintenance and therefore, they are grouped together. Similarly, SRP is considered

to be a preventive maintenance and therefore, SRP and PFB are grouped together.

Finally, EMR and DC are not grouped together, because the first one is an emergency

maintenance and the latter is merely a check. They are each studied separately.
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4.5 Summary

In this chapter, the definitions of FTQ, SQIi, sFTQ, sSQIi and instantaneous SQI

were introduced. The sliding window approach was also introduced. It is used for

a better detection of changes in quality of the produced parts. Finally, different

maintenance work types were presented and divided into groups depending on the

nature of the maintenance type.



Chapter 5

Correlating Maintenance and

Quality

In this chapter, several attempts at identifying correlations between maintenance

data and quality data using the definition of SQI and instantaneous SQI are stud-

ied. The results of these attempts, which are based on examples derived from real

manufacturing data, are shown and discussed.

5.1 The Case for SQI

A closer look at EMR and DC maintenances in relation to the SQI revealed some

interesting facts. After a DC maintenance is applied, there is a delay after a mainte-

nance occurrence (represented by the vertical lines), before any improvement is seen

in the SQI (Figure 5.1). This delay might be associated with some sort of produc-

tion break. Surprisingly, an EMR maintenance can cause the quality to decrease

(Figure 5.2). Furthermore, the duration of an EMR maintenance is usually quite
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short. SQI plots were plotted for several stations to confirm these facts.

It can clearly be seen from Figure 5.1 that the first DC maintenance (≈127 days)

takes just less than one day to show an improvement in SQI, while the second DC

maintenance (≈133 days) takes nearly two days to show any improvement in SQI.
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Figure 5.1: DC maintenance shows some improvement, but after some delay

Figure 5.2 shows how an EMR maintenance can sometimes lead to a decrease

in quality, but at other times, leads to an increase in quality. Similar results were

obtained for other stations.
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Figure 5.2: EMR decreases and increases quality (before 140 days and after 170 days)

5.2 The Case for Instantaneous SQI

5.2.1 Chattering Problems

Equation (4.11) is an estimation of the instantaneous quality at a station i that can

not be estimated directly from the data set due to chattering problems as seen in

Figure 5.3.

Therefore, a more robust observer should be implemented to reduce chattering

problems. A Kalman filter is introduced to obtain estimates for the instantaneous

quality at a specific station.
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Figure 5.3: Chattering problems observed when equation (4.11) is estimated directly

5.2.2 Kalman Filter

Starting from the quality measurement using equations (4.9) and (4.11), the state-

space representation is defined as:

ẋ(t) = A(t)x(t) + wx(t) (5.1)

where x(t) represents the state defined by [Q(t), Q̇(t), Q̈(t), q(t)], where q(t) = 1− 1
p(t)

,

A(t) is the time-varying matrix and wx(t) is the state noise.

The measurement equation is given by:

y(t) = Cx(t) + wy(t) (5.2)

where y(t) represents the measurement, C the measurement matrix and wy(t) the

measurement noise.
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Noises wx(t) and wy(t) are supposed to be uncorrelated, white and gaussian with

covariance matrices Wx and Wy, respectively.

Matrices A and C are defined by:

A(t) =




−1/(t + ε) 0 0 1/(t + ε)

0 0 1 0

0 0 0 0

0 2 t 0




C =

(
1 0 0 0

)

The calculation of the eigenvalues of A gives the state-space representation as

defined by equation (5.1). This is an unstable system. Three poles are zero and the

last pole has a negative real part that depends on 1
t+ε

, where ε is a constant. To satisfy

the convergence of the instantaneous quality estimations, an observer is implemented.

The basic principle of an observer is to close the loop using the measurement as input

and to optimize the correlation between the measurements and the output estimations

while minimizing noise effects. In this work, the observer is given by:

˙̂x(t) = A(t)x̂(t) + K(t)(y(t)− Cx̂(t)) (5.3)

ŷ(t) = Cx̂(t) (5.4)

where x̂ corresponds to the state estimation, ŷ the output estimation and K is the

observer gain matrix.

The dynamic equation of the error x̃ between the state x and its estimation x̂ can

be calculated:

˙̃x(t) = ẋ(t)− ˙̂x(t)

= (A(t)−K(t)C)x̃(t) + wx(t)−K(t)wy(t) (5.5)
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From Equation (5.5), the choice of matrix K gives the stability of the observer, if

the real parts of (A(t)−K(t)C)-eigenvalues are negative. Moreover the choice of K

can be realized by minimizing the covariance of the estimation error:

Ṗ (t) = Cov[ ˙̃x(t)]

= (A(t)−K(t)C)P (t) + P (t)(A(t)−K(t)C)T

+ Wx + K(t)Wy(t)K(t)T

(5.6)

Initial values of P (t) can be estimated from historical data. To find the matrix K

that minimizes the covariance error P , the influence of K toward P is calculated:

∂trace(Ṗ (t))

∂K(t)
= −P (t)CT − P (t)CT + 2K(t)Wy (5.7)

If ∂trace(Ṗ (t))
∂K(t)

is equal to 0, that gives the necessary condition to obtain the minimum

value of P , which turns out to be:

K(t) = P (t)CT W−1
y (5.8)

If the expression of K(t) given by Equation (5.8) is substituted into Equation (5.7),

it gives:

Ṗ (t) = A(t)P (t) + P (t)A(t)T − P (t)CT W−1
y CP (t) + Wx (5.9)

which is a Riccati equation with the asymptotic convergence property for the eigen-

values. The greatest estimation error converges to 0. For more details see [19], [31]

and [48].
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5.2.3 Instantaneous SQI using a Kalman Filter

A Kalman filter is used to get an estimate of the instantaneous quality of a particular

station. A schematic of this model for a single station can be seen below in Figure

5.4:
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Figure 5.4: Schematic of instantaneous SQI estimation technique

where ui(t) is the number of products entering station i, vi(t) is the output from

station i going to station i + 1, xb(t) is the number of products in the buffer, ri is the

number of rejects that take place at station i, Qi is the SQI at station i and q̂i is the

estimated instantaneous SQI at station i calculated using the Kalman filter.

The way the model in Figure 5.4 works is that it initially calculates the SQI (Qi)

as shown previously and then feeds it into the Kalman filter. The Kalman filter then

uses this information to calculate an estimate of the instantaneous quality q̂i at a

particular station i.
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5.2.4 Incorporating Maintenance Data into Instantaneous SQI

Plots

The next step is to incorporate maintenance data into the instantaneous SQI plots.

The simulation is run for a period of 600 hours or 25 days. The simulation starts

after 150 days from the beginning of the data (in the data set provided) and ends at

175 days. This area was chosen after several SQI plots proved that there were many

fluctuations in the data in that region, which meant more analysis could be done, as

compared to other areas, where there was less variation in the SQI.

The first segment of the manufacturing line is the main focus of this section. In-

stantaneous SQI plots were plotted for all the stations in the first segment, except

for a couple of stations, since no reject data was available for these stations. Some

stations resulted in instantaneous SQI plots that did not provide any useful infor-

mation because there was either no maintenance data for that station within the

simulated time period or very few variations in the instantaneous SQI were observed.

On the other hand, there are two stations that provide useful information for the

analysis of the maintenance data. Stations B and C are considered to be very useful,

since they show a lot of fluctuations in the instantaneous SQI and have a variety of

maintenance occurrences, including EMR. EMR is an emergency maintenance. The-

oretically speaking, an emergency maintenance is expected to occur when there is a

sharp decrease in quality and an immediate improvement is expected after it is done.

With this focus in mind, stations B and C are analyzed further.

Since the instantaneous quality is a quality index, it cannot have a value greater

than one. However, in the following figures, the reader will notice that the instanta-

neous quality is sometimes greater than 1. The reason for this is that these estimations
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are not filtered and no thresholds are applied.
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Figure 5.5: Zoom-in on section with EMR

Figure 5.5 is a zoom-in on the instantaneous quality plot obtained for station B. It

is evident that as soon as the instantaneous quality decreases, an EMR maintenance

takes place (solid, vertical line) and as soon as the maintenance ends (dashed, vertical

line), the instantaneous quality increases. This is a really good indication that the

theory stated above is valid. Unfortunately, this result does not hold for all stations.

An example where this theory does not apply is station C. A zoom-in (Figure 5.6)

on the first EMR maintenance occurrence shows that a maintenance occurs slightly

after a sharp decrease in quality reaches a minimum, which might be associated

with some type of delay. However, what is really difficult to comprehend is why the

previous drops in quality, which were more severe drops (such as at 320 hours of

simulation time, for example), were not given any attention in terms of emergency

maintenance.
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Figure 5.6: Zoom-in on first EMR occurrence
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Figure 5.7: Zoom-in on second EMR occurrence
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The second EMR occurs later on after 490 hours of simulation time. The result

of this maintenance is a decrease in quality and it is very difficult to justify why this

would happen. This can clearly be seen in Figure 5.7.

5.3 Summary

We noticed that according to the definitions of SQI and instantaneous SQI, when a

maintenance event is detected, a change in quality appears after some delay, which

might be attributed to the time it takes for a station that has just been serviced to

start up again and synchronize with the other stations. It was also interesting to note

that according to these definitions of quality, maintenance events sometimes lead to

a decrease in quality.



Chapter 6

A New Quality Definition

In this chapter, a new quality definition known as Maintenance Quality is defined.

This definition of quality is then examined to correlate maintenance and quality

data sets in an effective manner. Several examples of preventive and emergency

maintenance are examined to test the accuracy of this mathematical formulation.

The results of these examples are then discussed in detail.

6.1 Maintenance Quality...A New Quality Defini-

tion

Previous quality definitions and calculations do not provide any expected results

associated with maintenance occurrence. No relationship between quality and main-

tenance occurrence was clearly exhibited in a global sense. Quality is simply plotted

against maintenance occurrence and a relationship is sought by analyzing the plots

and looking at what happens after maintenance takes place. Therefore, another more
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accurate method for calculating quality has to be defined.

Definition 6.1.1. Maintenance Quality or MQ calculates the level of quality after a

maintenance occurrence is detected. For a given time interval, when the first mainte-

nance point is detected, MQ is calculated as sSQI until the second maintenance point

is detected, given that the number of parts that have gone through the station being ex-

amined has reached the size of the sliding window (N). If the size of N is not reached,

MQ waits until N parts pass through the station and then calculates sSQI. It disregards

the first condition which stops calculating sSQI when the second maintenance point is

reached. MQ is calculated as sSQI only until the second maintenance point is detected,

given that N is reached within that time interval, or until N is reached regardless of

how many maintenance points are detected during that interval. After that, MQ is

calculated as the SQI of the closest maintenance point after sSQI is calculated and

the next one after that. This is computed as follows:

MQi(t) =





0 if t < N

α(sSQIi(M) + βSQIi[M+,t](t)) if t ≥ M

sSQIi(t) if N ≤ t < M

(6.1)

where

• α and β are weights used to indicate how much confidence is given to sSQIi(t)

and SQIi(t) used in defining MQi(t).

•
α =

1

t−M + 1
(6.2)
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β = t−M (6.3)

Therefore, m−M + 1 values are used when calculating MQi.

•

sSQIi(m) = 1−

m∑
n=m−N+1

ri(n)

N
(6.4)

where N is the fixed number of parts taken into account or the size of the sliding

window, m is the number of parts that pass through a particular station i after

an initial time t0 = 0 and
m∑

n=m−N+1

ri(n) is the number of parts that are rejected

at station i during production.

•

SQIi(t)[M+,t] =

t∑
i=M+1

pi(t)−
t∑

i=M+1

ri(t)

t∑
i=M+1

pi(t)

(6.5)

=

t− (M + 1) + 1−
t∑

i=M+1

ri(t)

t− (M + 1) + 1
(6.6)

=

t−M −
t∑

i=M+1

ri(t)

t−M
(6.7)

where SQIi(t) is the Station Quality Index of station i at time t using the output

function pi(t) and reject function ri(t) over the interval [M+,t]. pi(t)=1 if a

part exits station i and 0 otherwise. If a reject is detected at station i, ri(t)=1,

otherwise ri(t)=0. M is the time at which a maintenance event is recorded.
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The final definition used to calculate MQi(t) is:

MQi(t) =





0 if t < N

1
t−Mj+1

(sSQIi(Mj) + (t−Mj)SQIi[M+
j ,t](t)) if t ≥ Mj

sSQIi(t) if N ≤ t < Mj

(6.8)

where Mj is the time at which the jth maintenance event is recorded.

6.2 MQ - Theoretical Results

Maintenance helps to keep plant equipment in good operating condition so that the

products being produced satisfy a certain quality criteria such as the ISO/QS 9000

quality requirements. Therefore, one would expect an improvement in product quality

after maintenance is performed on plant equipment.

 
 
 
 
 
 
 
 
 
 
 
 

 

 t1=M1    t1+1t0 = N  t2=M2    t2+1  

Maintenance Quality 

Maintenance Occurrence 

Figure 6.1: Expected results for MQi
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Figure 6.1 shows a theoretical view that explains how Equation (6.8) is used to

calculate Maintenance Quality. By looking at the figure, one can see that for the first

period from t0 = N until the first maintenance is scheduled at t1 = M1, the calculated

Maintenance Quality just oscillates around a specific quality level. This is due to the

fact that a sliding window approach is used to calculate this first segment. However,

from t1 onwards, the quality initially increases as expected due to maintenance and

then tends to decrease before another maintenance event occurs at t2 = M2. This is

due to the fact that the method used for calculating Maintenance Quality changes

and relies on the definition of SQI.

6.3 Relating Maintenance Quality to Maintenance

Occurrence

To observe the results of the new quality definition, five stations in four different

sections of the manufacturing line are examined. Due to the size of the data set used,

the time interval selected for this analysis is only between 100 and 200 days from the

start time of the data set.

Two sets of results are obtained. The first set of results studies the relationship

between preventive (scheduled maintenance) and its effect on Maintenance Quality,

whereas the second set of results analyzes the effect of emergency maintenance (un-

scheduled maintenance) on Maintenance Quality.
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6.3.1 Preventive Maintenance Results

The first set of results examines preventive maintenance done on the plant. Preven-

tive maintenance is used to periodically maintain plant equipment to prevent it from

reaching a point when it can no longer be fixed. As a result, breakdowns decrease

and plant equipment does not depreciate as much [34].

Station D

Results obtained for the first station studied are now discussed. The Maintenance

Quality is calculated over 100 days of operation and starts at the 100th day of the

data set. In the figures that follow, the dashed, vertical lines represent the time at

which a preventive maintenance event takes place.
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Figure 6.2: MQ results for station D.
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By looking at Figure 6.2, it can be seen that the lowest the Maintenance Quality

for station D is just below 0.995 (or 99.5%), which corresponds to a very good level of

quality. One can see that after maintenance occurs, a slight delay with a low quality

level, but then the quality level increases and gets close to 1 (or 100%). This delay

may be due to temporarily shutting down the station for maintenance and starting

it up again. The results obtained for station D do not closely follow the expected

results. However, there is some resemblance, in the sense that, the first part of the

plot is relatively constant since MQ is calculated using the sSQI definition. It can

also be noted that from that point onwards, between every two maintenance points,

the quality would increase, but unfortunately, it does not decrease before the next

maintenance point is detected as hypothesized. Nevertheless, it is safe to say that

there is a relationship between maintenance occurrence and increase in quality. This

observation is based on the results obtained, which indicate that following the detec-

tion of a maintenance event, an initial decrease in quality is observed, followed by a

significant improvement in quality.

Station E

Figure 6.3 shows the results obtained for station E, focusing on the time interval

24 − 44 days. We first notice that in Figure 6.3 the results closely resemble the

hypothesized results. The quality initially increases after the second maintenance

occurrence is detected until it reaches a peak and then decreases as time goes by and

another maintenance point is about to be detected. Figure 6.3 is only a window of

the results obtained for this station, but in this window of time, it can be seen that

the quality never goes below 92%. However, there is a point in the plot of the overall
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results for this station at which the quality goes down to about 25%. Furthermore, a

direct relationship between maintenance and quality can clearly be observed.
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Figure 6.3: Zoom-in on MQ results for station E.

6.3.2 Emergency Maintenance Results

Emergency maintenance is also referred to as unscheduled maintenance. This usually

occurs when a station at the manufacturing plant suddenly breaks down and has to

be fixed immediately to avoid any loss in production. In Figs. 6.4, 6.5 and 6.6, the

solid, vertical line indicates the time at which an emergency maintenance event takes

place.
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Station D
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Figure 6.4: Zoom-in on EMR’s effect on MQ for station D

In Figure 6.4, an EMR maintenance point can be seen after 72 days mark and an

increase in quality occurs after about 79 days of simulation. However, it is not clear

whether the cause of this increase in quality is the preventive maintenance that took

place or the EMR maintenance or both. Unfortunately, this was the only EMR main-

tenance point observed at this station for the time interval being examined. Better

results were obtained for station E.
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Station E

Several EMR maintenance points are observed at this station. In Figure 6.5, it

is clear that when an EMR maintenance occurs after about 22 days of simulation

time, the results are positive and an increase in quality is spotted. Just to make sure

that this trend is not merely a coincidence, another EMR maintenance point at this

station is examined.
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Figure 6.5: Zoom-in on EMR’s effect on MQ for station E
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Figure 6.6: Confirmation of EMR’s effect on MQ for station E

Again, similar results are obtained when an EMR maintenance point is detected.

Maintenance Quality increases and follows the theoretical trend described previously,

where the quality first increases and then decreases. This result supports the hypoth-

esis that there is a direct relationship between maintenance occurrence and increase

in Maintenance Quality.

6.4 Summary

Through the definition of Maintenance Quality, we were able to come up with a

novel mathematical formulation that correlates independent sets of maintenance and

quality data. Several examples were used to demonstrate how the results obtained

from this mathematical formulation matched the theoretical results.



Chapter 7

Ageing and Maintenance Modeling

Ideas

According to the results obtained using MQ, there is significant supporting evidence

of a direct relationship exists between performing maintenance and improving quality.

The next step is to provide some simple ideas on how ageing and maintenance of plant

equipment can be modeled.

7.1 Ageing

Ageing can be defined as the time between two maintenances or the number of parts

passing through a station between two maintenances. This study proposes to model

the ageing based on the part number.

69
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7.1.1 Linear ageing

In this part, it is assumed that the λ-parameters decrease as a linear function of the

number of parts passing through a station:

λm
i,j,k(t) = λr

i,j,k(t)

(
1− pi(t)

a

1

100

)
(7.1)

where λm
i,j,k represents to the modified value of the λ-parameter according to the

station i, the part type j and the shift k at time t, λr
i,j,k the real value of the λ-

parameter, pi the part passage number (all parts mixed), a an ageing speed constant

(every a parts that pass through the station i, the λ-parameter decreases by 1%).

The modified parameter λm is used in the model as the reject rate parameter.

7.2 Maintenance

This λ-parameter, called λm, decreases as the number of parts passing through a

station increases, modeling the ageing of the manufacturing lines. It is obvious that

if plant maintenance is neglected, production quality will decrease and the number of

rejects will increase significantly. Now, three types of maintenance will be defined:

• cyclic maintenance; the period between two maintenances is the same (for ex-

ample every 12 hours),

• low quality maintenance; the maintenance is done on a station when the station

has too many rejects,

• reconfiguration maintenance; a specific maintenance is done for a specific part

type to make a new configuration of stations.



CHAPTER 7. AGEING AND MAINTENANCE MODELING IDEAS 71

7.2.1 Cyclic Maintenance

In this case of maintenance, stations are periodically inspected every given time pe-

riod Tm. The following algorithm describes the approach:

Cyclic Maintenance Algorithm

I Initialization,

tmi
= ti,0

for each time instant t

if t− tmi
≥ Tm then

pi = 0

tmi
= t

end if

end for

All stations are not required to have the same maintenance period. In this case,

the greatest common factor of maintenance periods can be defined pm and for a

specific station the maintenance period is defined by: Tmi
= αipm, with αi ∈ N.

7.2.2 Low Quality Maintenance

Unlike other maintenance definitions, low quality maintenance is not based on a

time period. The occurrence of a maintenance is stochastic. In fact, this type of

maintenance is done when a station has a very low production quality.

This way, the number of rejects associated with each station is calculated and

called ri. SQIi gives a dynamical estimation of the quality for each station. The
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maintenance can be easily done for a given threshold by comparing the SQI value to

the threshold thi. The algorithm is proposed hereafter.

According to this algorithm, the maintenance aim is to reset the λ-parameter to

the real value, it gives: λm
i,j,k = λr

i,j,k as explained in Equation (7.1) when pi equals

zero. This action stops the ageing of the station by resetting ri to zero.

Low Quality Maintenance Algorithm

I for each new part in station i,

pi = pi + 1

if the part has a reject in the station then

ri = ri + 1

end if

SQIi(t) =





1 if pi = 0,

1− ri

pi
otherwise.

if SQIi(t) < thi then

pi = 0

ri = 0

end if

end for

7.2.3 Reconfiguration Maintenance

The reconfiguration maintenance is a very specific maintenance, that can be done

when a new part type enters the manufacturing line. In this case, the maintenance

consists of reconfiguring or adapting the station to the new part type.
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Reconfiguration Maintenance Algorithm

I for each new part in station i,

if the part has a specific product type j

tmi
= t

pi = 0

ri = 0

end

end

7.3 Summary

Several maintenance models were discussed in this chapter, each having their own

advantages and disadvantages. The ageing and maintenance modeling ideas in this

chapter form the basis for the next step in this research project. The effect of ageing

and maintenance on plant equipment will hopefully be incorporated into our model

to form a complete manufacturing system model that will help improve the manufac-

turing quality of the goods produced by these systems.



Chapter 8

Conclusions

The modeling of manufacturing systems and obtaining optimal policies to run these

systems is an area of great interest. Although many researchers have proposed mod-

eling techniques such as discrete event systems (DES) and timed DES, the complex,

multi-scale nature of large manufacturing systems limits the applicability of these

techniques and therefore, hybrid modeling techniques are used to overcome these

difficulties. One of the objectives of this research was to study the dynamics of man-

ufacturing systems using a SFM-based hybrid system modeling paradigm. In contrast

to previous work where the dynamics of these states was primarily modeled using de-

lays, our project focused on using SFM to model the state dynamics that indicate

the quality level of the manufacturing system.

This thesis demonstrates how the stochastic flow model (SFM) approach provides

a suitable tool for the dynamic modeling of first-time quality (FTQ) for manufac-

turing systems. This modeling approach, which has been recently investigated [3] in

the context of manufacturing systems, provides an effective platform to incorporate

other common objectives in addition to quality such as throughput improvement and
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resource allocation subject to stochastic fluctuations. Two examples from an auto-

motive manufacturing environment were used to prove the accuracy and potential of

using this modeling technique to determine the quality of manufacturing systems. In

the first example, the relative mean error between the observed FTQ and the value

calculated from the SFM was less than 2% after 6.5 hours of simulation and less than

1% after 10 hours of simulation. In the second example, the comparison between the

estimation of the FTQ by the SFM model and the FTQ index calculated from the

historical data was extended to include a comparison with the expected value of the

FTQ defined over all stations. The accuracy of the SFM algorithm was evident in this

example, with all the estimations being within the 5%-error confidence interval after

2.5 hours of simulation and 50% of simulations being within the 1%-error confidence

interval after 5 hours of simulation. Therefore, both examples proved that the SFM

is a very accurate predictor of the FTQ in an assembly line.

A novel adaptive estimation algorithm was developed for the estimation of model

parameters. This technique uses a likelihood estimation algorithm when the number

of rejects is less than the window size M. It uses an adaptive algorithm when the

number of rejects is greater than or equal to M, thereby accounting for non-stationary

behavior of the model parameters. This parameter estimation strategy provides a

novel alternative to existing techniques and is suitable for assessing the manufacturing

quality of a system that is modeled using the SFM approach.

The correlations between independent sets of maintenance and manufacturing

quality data was analyzed. Several quality definitions were introduced and their

results were discussed. Using the definitions of quality defined in sections 4.1 and 4.3,

we obtained some interesting findings. We noticed that according to the definitions
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of SQI and instantaneous SQI, when a maintenance event is detected, a change in

quality appears after some delay, which might be attributed to the time it takes for

a station that has just been serviced to start up again and synchronize with the

other stations. It was also interesting to note that, according to these definitions of

quality, maintenance events sometimes lead to a decrease in quality. For example,

DC maintenance provided an improvement in SQI after a small delay. It was also

found that EMR caused both a decrease and an increase in SQI. The results obtained

from the instantaneous SQI plots agreed with those obtained from the initial SQI

plots. Both sets of plots showed that an EMR maintenance can sometimes result in

a decrease in quality.

Previous quality definitions (SQI and instantaneous SQI) and calculations did not

provide any expected results associated with maintenance occurrence. No relation-

ship between quality and maintenance occurrence was clearly exhibited in a global

sense. Quality was simply plotted against maintenance occurrence and a relationship

was sought by analyzing the plots and looking at the effect of maintenance. A more

accurate method for calculating quality was proposed. The new definition of quality,

Maintenance Quality, provided some very encouraging results. These results matched

the theoretical results and proved that a direct relationship between maintenance oc-

currence and increase in quality was present. This was mainly due to the development

of this novel definition that took into account maintenance occurrence and calculated

the quality accordingly. The new maintenance definition provided a mathematical

formulation that identifies the direct correlation existing between maintenance and

quality.
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The last step in this research project was to generate some ageing and maintenance

modeling ideas that will be used in future work to create a complete model for the

manufacturing line that performs maintenance on the plant in an optimum manner

such that high quality products are produced while minimizing costs. Other future

work includes modeling other automotive plants and applying these quality definitions

to them. These plants will be modeled using historical data obtained from the plant

such as downtime, average cycle time and production time. The model will then

be verified by comparing the output from the model to historical data and see how

well they match. After the model is verified, maintenance and quality data will be

obtained and the definition of Maintenance Quality will be implemented. By doing

so, we hope that we can help bridge the gap between maintenance and quality in the

manufacturing industry.
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