DETECTION OF AQUEOUS LEAD (II) AND MERCURY (II)
USING MICRO-RING RESONATORS COATED WITH TETRASULFIDE
FUNCTIONALIZED MESOPOROUS ORGANOSILICA THIN FILMS

by

Hao Chen

A thesis submitted to the Department of Chemistry
In conformity with the requirements for
the degree of Master of Science

Queen’s University
Kingston, Ontario, Canada
March, 2017

Copyright © Hao Chen, 2017
Abstract

Silicon-on-insulator (SOI) micro-ring resonators coated with bis[3-(triethoxysilyl)propyl]tetrasulfide (TESPT) and tetraethoxysilane (TEOS) co-condensation mesoporous silica coatings are reported as chemical sensors to detect Pb(II) and Hg(II) ions in aqueous solutions. The sensors were based on the interaction of the evanescent field of the guided light with the functionalized mesoporous silica films. Upon adsorption of heavy metal ions (Pb(II) and Hg(II)), the refractive index of the film increased, leading to observable shifts in the resonant wavelengths of the micro-resonators. The tetrasulfide groups were placed into some of the silica films to increase the films’ affinity to Pb(II) and Hg(II) ions.

The sensors were exposed to aqueous solutions of Pb(II) and Hg(II) ions at different concentrations and time-resolved adsorption-desorption curves were recorded and analyzed. It was found that two distinct binding sites with different affinities for metal ions were present in the \(\text{S}_4\text{-TEOS} \) silica films, corresponding to the tetrasulfide groups and the silanol groups. The rate constants for the absorption and desorption processes as well as the equilibrium constants were determined for each of the binding sites and ions. The initial adsorption rates of the Pb(II) and Hg(II) uptake processes changed linearly with Pb (II) and Hg(II) concentrations from 10 ppb to 1 ppm and could be used to quantify metal ions at the 30 ppb level.

The adsorption and desorption processes of other ions on the same tetra-sulfide film were reported to test for possible chemical interferences – specifically of Na(I), K(I), Mg(II), Ca(II), Fe(II), Zn(II), Cd(II), and Fe(III). In addition, Pb(II), Na(I), K(I), Ca(II), Fe(II), and Fe(III) solutions were tested on mesoporous silica films without the tetrasulfide groups to test their adsorption and desorption to bare silica. These test results fitted well with a single-adsorption-site model for TEOS silica film, which confirmed the double-adsorption-site model for the \(\text{S}_4\text{-TEOS} \) silica films, where the deprotonated silanol groups and the tetrasulfide groups acted as the two adsorption sites. A single-adsorption-site model was developed for the TEOS silica film, with the deprotonated silanol groups as the only adsorption sites. Tap water and seawater spiked with Pb(II) were also tested on \(\text{S}_4\text{-TEOS} \) silica films.
Acknowledgements

I want to thank my supervisor, Dr. Hans-Peter Loock, who gave me the opportunity to study and work under his supervision. You have always been an excellent supervisor and mentor to me. Your encouragement, patience, and helpful advice were essential for me to finish this research project.

I want to thank my supervisory committee members, Dr. Richard Oleschuk, Dr. Diane Beauchemin, and Dr. Gang Wu for their help and advice. You have both been very supportive in helping me on this project and my graduate studies.

I want to thank my coworkers who worked with me on this project, Dr. John Saunders, Dr. Sogol Borjjan Borjjeni, Dr. Xiaowei Wu, Connor Sanders, and Dr. Jack Barnes. Without your help and cooperation, this project could never have succeeded.

I want to thank my colleagues, Dr. John Saunders, Dr. Sogol Borjjan Borjjeni, Dr. Xiaowei Wu, Nicholas Andrews, Amy Maclean, Annica Freytag, Connor Sanders, Dr. Steve Walker, Jeff Crouse, Dr. Yoany Rodriguez for their kindness and support. You have always been up for a good time.

I want to thank all my collaborators, including Dr. Cathleen Crudden, ABB Canada Inc, and National Research Council Canada.

I want to thank all the administrative, research, and technical staff in the Department of Chemistry, who did an excellent job in supporting my study and research.

I want to thank my beloved families, my father Chen Hong, who supports me all along, and my mother Zhang Jirong, who is dearly missed and has always been blessing me from the heaven.

I want to give special thanks to my friend Miriam Bart, who has been a great friend throughout my time here.

I want to thank Queen’s University, Natural Sciences and Engineering Research Council of Canada (NSERC), and ABB Canada Inc. for all the financial support for my study and research activities.
Table of Contents

Abstract ... ii
Acknowledgements ... iii
List of Figures .. vii
List of Tables .. xi
List of Abbreviations ... xiv

Chapter 1 Introduction ... 1
 1.1 Waveguide Refractive Index Sensors ... 1
 1.2 Refractive Index and Refractive Index Measurement ... 1
 1.2.1 Refractive Index .. 1
 1.3 Optical Waveguides, Modes, and Evanescent Wave ... 3
 1.4 Fibre Grating Sensors .. 4
 1.4.1 Straight and Tilted FBGs ... 5
 1.4.2 Long-Period Gratings (LPGs) ... 7
 1.5 Silicon-on-Insulator (SOI). ... 8
 1.5.1 Waveguide Mach-Zehnder interferometers .. 10
 1.5.2 SOI Ring Resonators .. 11

Chapter 2 Evanescent Wave Sensor Functionalization Methods .. 13
 2.1 Bio-molecule Functionalization for Biosensors ... 14
 2.1.1 Antibody Functionalization ... 14
 2.1.2 Aptamers Functionalization ... 14
 2.1.3 Other Molecules for Biosensor Functionalization .. 15
 2.2 Polymer Functionalization ... 15
 2.2.1 Molecularly Imprinted Polymer Functionalization .. 15
 2.2.2 Siloxanes Functionalization for Volatile Organic Compound (VOC) Sensors 16
 2.3 Porous Silica Functionalization ... 16
 2.3.1 Functionalized Mesoporous Silica as Scrubbing Material for Phosphate and Nitrate ions. 18
 2.3.2 Tetrasulfide-functionalized Mesoporous Silica Coatings on LPG Sensor 19

Chapter 3 Theory of Adsorption and Desorption, Models, and Equations 21
 3.1 Adsorption Theory .. 21
 3.1.1 The Langmuir Adsorption Theory .. 21
 3.1.2 The Brunauer–Emmett–Teller (BET) Theory ... 22
 3.1.3 The Temkin Theory .. 23
5.4 Hg(II) Ion Adsorption and Desorption Tests in DI Water

5.3 Pb(II) Ion Adsorption and Desorption in Tap Water

5.2 Pb(II) Ion Adsorption and Desorption Tests in DI Water

4.6 Water Flow Baseline Drift

4.5 Mesoporous Silica Coating

4.4 Microfluidic Device and Liquid Sample Pumping System

4.3 Ring Resonators Calibration

4.2 Optical Experimental Setup and Methods

4.1 Temperature Effects and Tandem Ring Resonators

3.3 Relationship Between Metal Loading in the Silica Film and Refractive Index

3.2 Models and Equations

3.1 The Freundlich Theory

3.1.4 The Freundlich Theory

3.1.3 Test on Uncoated Chip

3.1.2 Adsorption and Desorption Tests on S4-PMS Coating

3.1.1 Adsorption and Desorption Tests on S3-PMS Coating

3.2.3 Method of Initial Rates Calculation

3.2.2 Double Adsorption Site Model

3.2.1 Single Adsorption Site Model

3.1.4 The Freundlich Theory

3.1.3 Test on Uncoated Chip

3.1.2 Adsorption and Desorption Tests on S4-PMS Coating

3.1.1 Adsorption and Desorption Tests on S3-PMS Coating

3.2.3 Method of Initial Rates Calculation

3.2.2 Double Adsorption Site Model

3.2.1 Single Adsorption Site Model

3.1.4 The Freundlich Theory

3.1.3 Test on Uncoated Chip

3.1.2 Adsorption and Desorption Tests on S4-PMS Coating

3.1.1 Adsorption and Desorption Tests on S3-PMS Coating

3.2.3 Method of Initial Rates Calculation

3.2.2 Double Adsorption Site Model

3.2.1 Single Adsorption Site Model

3.1.4 The Freundlich Theory
7.1 Summary ... 110
7.2 Future work ... 111
 7.2.1 Coating Optimization .. 112
 7.2.2 Data Processing Method .. 112
 7.2.3 Optical Design .. 112
 7.2.4 Testing Parameter Optimization .. 114
References .. 115
List of Figures

Figure 1-1 Diagram showing refraction and reflection at a dielectric interface..2
Figure 1-2 Diagram showing refraction and total internal reflection at a dielectric interface..................2
Figure 1-3 Diagrams showing evanescent field profile and cross-sections for typical waveguides..........4
Figure 1-4 The structures and modes coupling of FBGs and TFBGs...6
Figure 1-5 Measured power transmission and reflection spectra for typical FBG and TFBG.....................7
Figure 1-6 An LPG spectrum. ..8
Figure 1-7 Optical microscope image of pair of tandem micro-ring resonators.................................9
Figure 1-9 Optical microscope image of several SOI Mach-Zehnder Interferometers.........................11
Figure 1-10 Optical microscope image of a 936 µm long spiral ring resonator on a SOI chip...........12
Figure 1-11 Resonance spectra of a 936 µm long spiral ring resonator..12
Figure 2-1 Diagram showing general principle of molecular imprinting..16
Figure 2-2 Scheme showing the condensation of TEOS and formation of silica network..................17
Figure 2-3 Schematic representation of typical micellar mesophases...18
Figure 2-4 Diagram showing the formation of mesoporous silica via a lyotropic liquid crystalline pathway...18
Figure 2-5 Structure of (3-Aminopropyl)triethoxysilane..19
Figure 2-6 Synthesis of tetrasulfide- and Ti-containing mesoporous materials as coatings for LPG chemical sensors. [15]..20
Figure 2-7 Optical response for the LPG coated with the PMO film to aqueous DMSO solutions (RI = 1.402 at 1550 nm) of Pb(II) of increasing concentration as observed by the LPG attenuation spectra...20
Figure 3-1 Langmuir isotherm for non-dissociative adsorption for different K values..........................22
Figure 3-2 BET isotherm at different values of c. ..23
Figure 3-3 Refractive index of porous silica film with water filling its pores as a function of the mole fraction of water...29
Figure 3-4 Porous silica refractive index as a function of Pb(II) and Hg(II) mole fraction at different porosity (x_{water} = 0.3, 0.4, 0.5)..31
Figure 3-5 Pb doping response on porous silica film as a function of porosity....................................31
Figure 4-1 Optical profilometer image and a transmission spectrum of a tandem ring resonator..........33
Figure 4-2 Compensation of temperature effects from the resonance shifts of the reference ring of a tandem ring resonator..35
Figure 4-3 The top blue dots indicate the temperature data measured by the USB temperature probe....35
Figure 4-4 Schematic of coupling methods to get light into photonic waveguides. ..37
Figure 4-5 Photo of the alignment stages with the fibers, microfluidics, tubes, and Photodiode detector.37
Figure 4-6 Schematic of the experimental setup for SOI chip testing. ..38
Figure 4-7 Sample voltage ramp from the Ando laser in the continuous wavelength scan mode..............................39
Figure 4-8 Comparison of the spectral resolution as a function of laser scan rate over a fixed spectral window. ..40
Figure 4-9 A tandem ring spectrum and a Lorentzian function fit on the sensing peak. ...41
Figure 4-10 The microfluidic device with the chip and the optical alignment. ...42
Figure 4-11 Tandem ring resonator calibration. ..43
Figure 4-12 Temperature-corrected sensing peak baselines at 0.9 ml/min and 0 ml/min flow rate of DI water. ..45
Figure 5-1 Comparison between single and double exponential functions fits of 1 ppm Pb(II) ion DI water solution adsorption and desorption on the Sx-PMS coating. ..48
Figure 5-2 Single exponential function fit to the 1 ppm Pb(II) adsorption and desorption processes of the PMS coating ..50
Figure 5-3 Uncoated chip shows no refractive index change between water and Pb(II) solution.51
Figure 5-4 Adsorption-desorption curve when the resonators were exposed to a series of Pb(II) solutions with concentrations of 1000 ppb, 500 ppb, 300 ppb, 200 ppb, 100 ppb, 50 ppb, 20 ppb, and 10 ppb.52
Figure 5-5 Double exponential function fits of 1 ppm Pb(II) ion adsorption and desorption processes on the Sx-PMS coating, with fit residual shown below. ...53
Figure 5-6 Double exponential function fits of 500 ppb Pb(II) ion adsorption and desorption processes on the Sx-PMS coating, with fit residual shown below. ...54
Figure 5-7 Double exponential function fits of 300 ppb Pb(II) ion adsorption and desorption processes on the Sx-PMS coating, with fit residual shown below. ...55
Figure 5-8 Double exponential function fits of 200 ppb Pb(II) ion adsorption and desorption processes on the Sx-PMS coating, with fit residual shown below. ...56
Figure 5-9 Single exponential function fits of 100 ppb Pb(II) ion adsorption and desorption processes on the Sx-PMS coating, with fit residual shown below. ...57
Figure 5-10 Single exponential function fits of 50 ppb Pb(II) ion adsorption and desorption processes on the Sx-PMS coating, with fit residual shown below. ...58
Figure 5-11 Single exponential function fits of 20 ppb Pb(II) ion adsorption and desorption processes on the Sx-PMS coating, with fit residual shown below. ...59
Figure 5-12 Single exponential function fits of 10 ppb Pb(II) ion adsorption and desorption processes on the Sx-PMS coating, with fit residual shown below. ...60
Figure 5-13 Initial refractive index change rate at different concentrations of Pb(II) ion.62
Figure 5-14 Diagram showing 1/τ_{a,X} has a linear relationship with Pb(II) concentration.64
Figure 5-15 [Pb(II)]/[Pb(II)X]_{eq,a} showing a linear relationship with Pb(II) concentration.65
Figure 5-16 Tap water adsorption curve of S_{4}-PMS coating. ...66
Figure 5-17 Tap water baseline of S4-PMS coating. ..67
Figure 5-18 Comparison between single and double exponential functions fits of 1 ppm Pb(II) ion tap water solution adsorption and desorption on the S_{4}-PMS coating. ...68
Figure 5-19 S_{4}-PMS coating refractive index change when alternating between DI water and seawater flow...69
Figure 5-20 Seawater spiked with 1 ppm Pb(II) adsorption and desorption test on S_{4}-PMS coated ring resonator. ...70
Figure 5-21 Comparison between single and double exponential functions fits of 1 ppm Hg(II) ion DI water solution adsorption and desorption on the S_{4}-PMS coating. ..71
Figure 5-22 The adsorption curve curves when the resonators were exposed to a series of Hg(II) solutions at 1000 ppb, 500 ppb, 300 ppb, 200 ppb, 100 ppb, 50 ppb, 20 ppb. ...73
Figure 5-23 Single exponential function fit of 1 ppm Hg(II) ion 40 minutes adsorption process on the S_{4}-PMS coating, with fit residual shown below. ..74
Figure 5-24 Single exponential function fit of 500 ppb Hg(II) ion 40 minutes adsorption process on the S_{4}-PMS coating, with fit residual shown below. ...75
Figure 5-25 Single exponential function fit of 300 ppb Hg(II) ion 40 minutes adsorption process on the S_{4}-PMS coating, with fit residual shown below. ...76
Figure 5-26 Single exponential function fit of 200 ppb Hg(II) ion 40 minutes adsorption process on the S_{4}-PMS coating, with fit residual shown below. ...77
Figure 5-27 Comparison between single exponential functions and linear fits of 100 ppm Hg(II) ion adsorption and desorption on the S_{4}-PMS coating. ..78
Figure 5-28 Comparison between single exponential functions and linear fits of 50 ppm Hg(II) ion adsorption and desorption on the S_{4}-PMS coating. ..79
Figure 5-29 Comparison between single exponential functions and linear fits of 20 ppm Hg(II) ion adsorption and desorption on the S_{4}-PMS coating. ..80
Figure 5-30 Initial refractive index change rate at different concentrations of Hg(II) ion.81
Figure 5-31 By fitting 1/τ_{a,X} vs. Hg(II) concentration, k_{a,X}, k_{d,X}, and K_{a,X} for Hg(II) ion adsorption on the S_{4}-PMS coating can be calculated. ...83
Figure 5-32 By fitting [Hg(II)]/[Hg(II)X]_{eq,a} vs. [Hg(II)] with a linear function, K_{a,X} and [X]_{0} for Hg(II) ion adsorption on the S_{4}-PMS coating can be calculated. ...83

ix
Figure 6-1 Single exponential function fit of Na(I) ion adsorption and desorption processes on the Sr-PMS coating ... 88
Figure 6-2 Single exponential function fit of Na(I) ion adsorption and desorption processes on the TOESMPS coating ... 89
Figure 6-3 Single exponential function fit of K(I) ion adsorption and desorption processes on the Sr-PMS coating ... 90
Figure 6-4 Single exponential function fit of K(I) ion adsorption and desorption processes on the TOESMPS coating ... 91
Figure 6-5 Single exponential function fit of Mg(II) ion adsorption and desorption processes on the Sr-PMS coating ... 92
Figure 6-6 Single exponential function fit of Ca(II) ion adsorption and desorption processes on the Sr-PMS coating ... 93
Figure 6-7 Single exponential function fit of Ca(II) ion adsorption and desorption processes on the PMS coating ... 94
Figure 6-8 Comparison between single and double exponential functions fits of Fe(II) ion adsorption and desorption on the Sr-PMS coating. ... 95
Figure 6-9 Single exponential function fit of Fe(II) ion adsorption and desorption processes on the TOESMPS coating ... 96
Figure 6-10 Comparison between single and double exponential functions fits of Zn(II) ion adsorption and desorption on the Sr-PMS coating. ... 97
Figure 6-11 Comparison between single and double exponential functions fits of Cd(II) ion adsorption and desorption on the Sr-PMS coating. ... 99
Figure 6-12 Comparison between single and double exponential functions fits of Fe(III) ion adsorption and desorption on the Sr-PMS coating. ... 100
Figure 6-13 Single exponential function fit of Fe(II) ion adsorption and desorption processes on the TOESMPS coating ... 102
Figure 6-14 Comparison between single and double exponential functions fits of Al(III) ion adsorption and desorption on the Sr-PMS coating. ... 103
Figure 6-15 Column graphs comparison between different ion adsorption on Sr-PMS film. ... 107
Figure 6-16 Column graphs comparison between different ion adsorptions on PMS film. ... 109
Figure 7-1 An example of Stratophase micro optical sensor packaging. ... 113
List of Tables

Table 2-1 Commercial optical waveguide chemical- and bio- sensors .. 13
Table 3-1 Pb(II) and Hg(II) doping response to the MPS film (wet and dry) ... 30
Table 5-1 Fitting parameters for single exponential functions (5.1) and (5.3), and double exponential equations (5.2) and (5.4) to describe the Pb(II) ion adsorption and desorption on the S₄-PMS coating of Figure 5-1 .. 49
Table 5-2 Fitting parameters for single exponential functions (5.1) and (5.3) to describe the Pb(II) ion adsorption and desorption on the PMS coating of the figure above ... 50
Table 5-3 Fitting parameters for double exponential function (5.2) and (5.4) fits of the 1 ppm Pb(II) ion adsorption and desorption on the S₄-PMS coating of the figure above ... 53
Table 5-4 Fitting parameters for double exponential function (5.2) and (5.4) fits of the 500 ppb Pb(II) ion adsorption and desorption on the S₄-PMS coating of the figure above ... 54
Table 5-5 Fitting parameters for double exponential function (5.2) and (5.4) fits of the 300 ppb Pb(II) ion adsorption and desorption on the S₄-PMS coating of the figure above ... 55
Table 5-6 Fitting parameters for double exponential function (5.2) and (5.4) fits of the 200 ppb Pb(II) ion adsorption and desorption on the S₄-PMS coating of the figure above ... 56
Table 5-7 Fitting parameters for single exponential function (5.1) and (5.3) fits of the 100 ppb Pb(II) ion adsorption and desorption on the S₄-PMS coating of the figure above ... 57
Table 5-8 Fitting parameters for single exponential function (5.1) and (5.3) fits of the 50 ppb Pb(II) ion adsorption and desorption on the S₄-PMS coating of the figure above ... 58
Table 5-9 Fitting parameters for single exponential function (5.1) and (5.3) fits of the 20 ppb Pb(II) ion adsorption and desorption on the S₄-PMS coating of the figure above ... 59
Table 5-10 Fitting parameters for single exponential function (5.1) and (5.3) fits of the 10 ppb Pb(II) ion adsorption and desorption on the S₄-PMS coating of the figure above ... 60
Table 5-11 Initial Adsorption rate of Pb(II) solutions at different concentrations .. 61
Table 5-12 Pb(II) Desorption data sets for k_d,calculation .. 63
Table 5-13 Pb(II) data sets for k_a, K_d, K_a, and [X]_o calculation .. 64
Table 5-14 Ion concentrations in Kingston tap water .. 66
Table 5-15 Fitting parameters for single and double exponential function fits of Pb(II) tap water solution adsorption and desorption of S₄-PMS coating .. 68
Table 5-16 Fitting parameters for single exponential functions (5.1) and (5.3), and double exponential equations (5.2) and (5.4) to describe the Hg(II) ion adsorption and desorption on the S_i-PMS coating of Figure 5-21...72
Table 5-17 Fitting parameters for single exponential function (5.1) and (5.3) fits of the 1 ppm Hg(II) ion adsorption and desorption on the S_i-PMS coating of the figure above. ..74
Table 5-18 Fitting parameters for single exponential function (5.1) and (5.3) fits of the 500 ppb Hg(II) ion adsorption and desorption on the S_i-PMS coating of the figure above. ...75
Table 5-19 Fitting parameters for single exponential function (5.1) and (5.3) fits of the 300 ppb Hg(II) ion adsorption and desorption on the S_i-PMS coating of the figure above. ...76
Table 5-20 Fitting parameters for single exponential function (5.1) and (5.3) fits of the 200 ppb Hg(II) ion adsorption and desorption on the S_i-PMS coating of the figure above. ...77
Table 5-21 Fitting parameters for single exponential function (5.1) and (5.3) fits and linear fit of the 100 ppb Hg(II) ion adsorption and desorption on the S_i-PMS coating of the figure above.78
Table 5-22 Fitting parameters for single exponential function (5.1) and (5.3) fits and linear fit of the 50 ppb Hg(II) ion adsorption and desorption on the S_i-PMS coating of the figure above.79
Table 5-23 Fitting parameters for single exponential function (5.1) and (5.3) fits and linear fit of the 20 ppb Hg(II) ion adsorption and desorption on the S_i-PMS coating of the figure above.80
Table 5-24 Initial Adsorption rates at different concentration of Hg(II) solutions.................................81
Table 5-25 Hg(II) adsorption data sets for $k_{a,X}$, $k_{d,X}$, $K_{a,X}$, and $[X]_0$ calculation..........................82
Table 5-27 Element ratio calculated from XPS data..86
Table 6-1 Fitting parameters for single exponential function fit on 43.48 μmol/L (1 ppm) NaNO₃ DI water adsorption and desorption processes on S_i-PMS coating..88
Table 6-2 Fitting parameters for single exponential function fit on 4.826 μmol/L NaNO₃ DI water adsorption and desorption processes on PMS coating..89
Table 6-3 Fitting parameters for single exponential function fit on 25.58 μmol/L (1 ppm) KNO₃ DI water adsorption and desorption processes on S_i-PMS coating..90
Table 6-4 Fitting parameters for single exponential function fit on 4.826 μmol/L KNO₃ DI water adsorption and desorption processes on PMS coating..91
Table 6-5 Fitting parameters for single exponential function fit on 41.15 μmol/L (1ppm) Mg(NO₃)₂ DI water adsorption and desorption processes on S_i-PMS coating..92
Table 6-6 Fitting parameters for single exponential function fit on 25.00 μmol/L (1ppm)Ca(NO₃)₂ DI water adsorption and desorption processes on S_i-PMS coating..93
Table 6-7 Fitting parameters for single exponential function fit on 4.826 μmol/L Ca(NO₃)₂ DI water adsorption and desorption processes on PMS coating..94
Table 6-8 Fitting parameters for single and double exponential functions fits of 17.86 µmol/L (1 ppm) Fe(II) ion adsorption and desorption on the S₄-PMS coating. ... 95
Table 6-9 Fitting parameters for single exponential function fit on 4.826 µmol/L Fe(NO₃)₂ DI water adsorption and desorption processes on PMS coating ... 96
Table 6-10 Fitting parameters for single and double exponential functions fits of 15.29 µmol/L (1ppm) Zn(II) ion adsorption and desorption on the S₄-PMS coating ... 98
Table 6-11 Fitting parameters for single and double exponential functions fits of 8.900 µmol/L (1ppm) Cd(II) ion adsorption and desorption on the S₄-PMS coating ... 99
Table 6-12 Fitting parameters for single and double exponential functions fits of 17.90 µmol/L (1ppm) Fe(III) ion adsorption and desorption on the S₄-PMS coating ... 101
Table 6-13 Fitting parameters for single exponential function fit on 4.826 µmol/L Fe(NO₃)₃ DI water adsorption and desorption processes on PMS coating ... 102
Table 6-14 Fitting parameters for single and double exponential functions fits of 37.04 µmol/L (1ppm) Al(III) ion adsorption and desorption on the S₄-PMS coating ... 104
Table 6-15 Different ion binding patterns with PMS coating and S₄-PMS coating.[54] ... 105
Table 6-16 Cation and oxide polarizability for some ions [44, 47] ... 105
Table 6-17 Data sets for column graphs comparison between different ion adsorption on S₄-PMS film(above) ... 108
Table 6-18 Data sets for column graphs comparison between different ion adsorption on PMS film(Figure 6-16) ... 109
List of Abbreviations

FBG - fibre Bragg grating
TFBG - tilted fibre Bragg grating
LPG - long-period grating
FM - forward mode
HOCM - higher-order cladding mode
SRI - surrounding refractive index
SOI - silicon on insulator
FSR - free spectral range
MZI - Mach-Zehnder Interferometer
TM - transverse magnetic
TE - transverse electric
SELEX - systematic evolution of ligands by exponential enrichment
DNA - deoxyribonucleic acid
RNA - ribonucleic acid
MIP - molecularly imprinted polymer
SPR - surface plasmon resonance
TNT - 2,4,6-trinitrotoluene
PDMS - poly(dimethylsiloxane)
VOC - volatile organic compound
TMOS - tetramethoxysilane (Si(OMe)_4)
TEOS - tetraethoxysilane (Si(OEt)_4)
BTESPTS - bis[3-(triethoxysilyl)propyl]tetrasulfide
PMO - periodic mesoporous organosilica
PMS – periodic mesoporous silica
S_4-PMS - tetrasulfide mesoporous silica

EPA - environmental protection agency

ppb - part per billion

ppm - part per million

DI Water - deionized water

EDTA - ethylenediaminetetraacetic acid

FWHM - full width at half maximum
Chapter 1

Introduction

This chapter provides an overview of several different designs of refractive index sensors and their operating principles.

1.1 Waveguide Refractive Index Sensors

Optical waveguide refractive index sensors have attracted research interests for decades. Several different chemical and bio-sensors were developed for applications in manufacturing, agriculture, environmental protection, health service, homeland security, etc. Many of these sensors enjoy advantages over conventional (e.g. electrical or colorimetric) sensors, such as higher sensitivity, large detection range, small size, environmental robustness, and immunity against electromagnetic interference. A large class of these sensors measures the refractive index change when interacting with chemical and biological analytes in the attempt to identify and quantify these analytes.

The rest of the chapter briefly explains some of the most popular waveguide-based index sensors, including Fibre Bragg gratings (FBG), long-period gratings (LPG), and micro-resonators.

1.2 Refractive Index and Refractive Index Measurement

1.2.1 Refractive Index

In vacuum, the speed of light is $c_0 = 1 / \sqrt{\varepsilon_0 \times \mu_0}$, where ε_0 is vacuum permittivity, and μ_0 is vacuum permeability. The refractive index of a certain medium is defined as the ratio between the speed of light in the medium and the speed of light in vacuum.

$$n = \frac{c_0}{c}$$

As the speed of light cannot be faster than that in vacuum, the refractive index is always larger than 1 in any medium other than vacuum.
In a homogeneous, isotropic material, light propagates in a straight line. When light travels from one medium into another medium with different refractive indices, diffraction and reflection occur at the interface. This behaviour is governed by Maxwell equations.

![Diagram showing refraction and reflection at a dielectric interface.](image)

Figure 1-1 Diagram showing refraction and reflection at a dielectric interface. When light travels from one medium into another medium with different refractive indices (in this case, \(n_1 > n_2 \), diffraction and reflection occur at the interface.) [1]

As shown in Figure 1-1, \(\theta_i \) is the incident angle, \(\theta_r \) is the reflection angle, and \(\theta_t \) is the transmission angle. The incident angle and reflection angle share the same value. The transmission angle can be calculated by Snell’s law, as shown in equation (1.2).

\[
\theta_i = \theta_r \\
n_1 \sin \theta_i = n_2 \sin \theta_t
\]

(1.2)

When light travels from a high refractive index medium into a low refractive index medium, all light is reflected when the incident angle is equal or larger than the critical angle \(\theta_c \). This phenomenon is called total internal reflection (TIR), as shown in Figure 1-2.

![Diagram showing refraction and total internal reflection at a dielectric interface.](image)

Figure 1-2 Diagram showing refraction and total internal reflection at a dielectric interface. When the incident angle is equal or larger than the critical angle \(\theta_c \), all light is reflected, and no transmission occurs. [1]
1.3 Optical Waveguides, Modes, and Evanescent Wave

Optical waveguides are dielectric media that can confine and guide electromagnetic waves. A waveguide such as an optical fibre has a high refractive index core surrounded by low refractive index cladding. Because of total internal reflection at the core-cladding interface, light traveling along the core remains confined in the core. The two most common basic waveguide setups are planar waveguides and optical fibres, with their structures shown in Figure 1-3.[2]

Waveguides can be divided into single mode and multi-mode waveguides, based on the number of modes guided by the waveguides. A mode, or eigenmode, is a light wave that reproduces itself after two reflections in a waveguide. A single-mode waveguide has a thin core that can only guide one light mode. A multi-mode waveguide has a thick core that can guide more than one light mode.[2]

The part of the mode fields that extends out of the waveguide cores is called the evanescent wave. Figure 1-3 shows a field distribution of the lowest transverse-electric (TE) mode (mode number, \(m = 0 \)) which has a Gaussian shape. The distribution tail with a penetration depth \(\Delta z \) is an evanescent wave. Evanescent waves are strongest at the core-cladding interfaces and decay fast as they penetrate the claddings. Because the evanescent fields are outside of the cores, they can interact with the surrounding mediums, and therefore have drawn interest from scientists to develop evanescent field sensing techniques.[2]
Figure 1-3 Diagrams showing evanescent field profile and cross-sections for typical waveguides. (a) A planar waveguide with a core (refractive index n_w) sandwiched between a substrate (refractive index n_s) and a cover (refractive index n_c). The evanescent field (penetration depth Δz) of a guided light mode extends into the cover. (b-left) The cross-section of an optical fibre. (b-right) Sensing area can be made by removing part of the cover (cladding). The same conditions apply as to optical fibre and planar waveguides. [2]

1.4 Fibre Grating Sensors

In a fibre grating sensor, the core of a germanium-doped single-mode optical fibre is prepared to have high and low index alternations along the direction of its fibre core axis. Based on the length of the period Λ, these fibre gratings can be subdivided into two distinct categories: short-period gratings, known as fibre Bragg gratings (FBGs) and long-period gratings (LPGs).[2]

While most of the fibre-grating-sensor research and applications have been in the field of strain- and temperature-sensing, the development of etched regular FBGs, tilted FBGs, and LPGs, and their sensitivities to the changes in the surrounding refractive indices (SRIs) have opened unprecedented opportunities for the development of fibre-optic refractometers.[2]
1.4.1 Straight and Tilted FBGs

In an FBG, the periodicity is uniform along the axis, and the period is usually on the order of half a micron [2]. For a given grating structure with a period Λ and a refractive index modulation Δn, waves reflected at each interface interfere with one another and are observed only for a particular resonance wavelength λ_B, which is called the Bragg wavelength. In addition, forward propagating core modes may couple with backward propagating higher-order cladding modes (HOCMs), generating cladding mode resonances. The structures and modes coupling within straight and tilted FBGs are shown in Figure 1-4. In a normal FBG, the Bragg peak is strong while the cladding mode resonances are weak. In a tilted FBG, the Bragg peak is weak while the cladding mode resonances are strong, as shown in Figure 1-5.[2]

For an FBG, the central Bragg wavelength λ_B is given as:

$$\lambda_B = 2n_e \Lambda$$

(1.3)

where n_e is the effective refractive index of the core, and Λ is the grating period. Numerous studies have demonstrated the use of FBGs as chemical sensors. Since light guided in the cores of the fibres does not interact with chemicals in the environment of the fibres, all these sensors require special coatings on the fibre waveguide. The coatings expand or shrink upon exposure with respective chemicals, thereby exerting strain on the FBG fibre, hence changing Bragg peak positions. In 1999, Spirin et al. reported a petroleum hydrocarbon leak sensor with a polymer coating.[3] In 2002, Cong et al. reported a salinity sensor with a hydrogel coating.[4] In 2005, Yeo et al. reported a humidity sensor with a moisture sensitive polymer coating.[5] In 1999, Sutapun et al. reported an FBG hydrogen sensor with a palladium coating, which expanded when the coating absorbed hydrogen. [6]

For a TFBG, the central Bragg wavelength λ_B is also governed by the equation (1.3), except Λ is replaced by the effective grating period Λ_g:

$$\lambda_B = 2n_e \Lambda_g$$

(1.4)
where $\Lambda_g = \Lambda / \cos \theta$ and θ is the tilt angle. The resonance wavelength λ_i of the i-th cladding mode is governed by

$$\lambda_i = (n_{e,d} + n_i)\Lambda$$

(1.5)

where $n_{e,d}$ is the effective refractive index of the core mode at λ_i, and n_i is the effective refractive index of the cladding.[2]

Figure 1-4 The structures and modes coupling of FBGs and TFBGs. In an FBG, the forward FM is coupled to backward FM and HOCMs (a) a regular BFG with strong coupling to a backward FM and weak coupling to a multitude of HOCMs; (b) a tilted FBG with weak coupling to a backward FM and a strong coupling to a multitude of HOCMs.[2]

TFBG cladding resonances peaks shift when surrounding refractive indices change. The changes can be enhanced by etching or by coating the TFBGs with gold or silver layers. TFBG chemical sensors have also been reported. In 2005, Chen et al reported a TFBG sugar sensor.[7] In 2009, Miao et al reported a relative humidity sensor based on tilted fibre Bragg grating with polyvinyl alcohol coating.[8] In 2014, Lépinay et al reported a molecularly imprinted polymer (MIP) coated TFBG sensor for maltol.[9]

Both FBGs and TFBGs resonance spectra are sensitive to strain and temperature. As a result, internal or external references are needed to eliminate those unwanted effects for chemical- or bio-sensing.
1.4.2 Long-Period Gratings (LPGs)

An LPG has a similar design as an FBG but with a period that is longer by about two orders of magnitude, usually several hundred micrometers. For an LPG, \(\lambda_{m,LPG} \) is a separate resonance wavelength corresponding to each HOCM. The higher the mode order \(m \), the greater the resonance wavelength \(\lambda_{m,LPG} \), as shown in Figure 1-6. [2]

However, as the LPGs resonance spectrums are also sensitive to strain and temperature, internal or external references are needed to eliminate those unwanted effects. In addition, the sensitivity of the LPG response depends strongly on the refractive index of the coating and is highly nonlinear. This makes the production of a robust and reliable sensor complicated. [15]

1.5 Silicon-on-Insulator (SOI).

As opposed to all waveguide sensors described above, the Silicon-on-insulator (SOI) waveguides are not based on optical waveguide fibre but based on planar waveguide. The SOI waveguides consist of silicon cores with either silica or polymer claddings. At the wavelength of 1550 nm, silicon refractive index
is 3.47, while the silica cladding refractive index is around 1.44. As the core and the core-cladding refractive index contrast is this high, the waveguide cross section can be as small as 0.2 µm. Also, the bend radius can be as small as a few microns, whereas optical fibre bend radii are typically at least 10-20 mm. As a result, the SOI waveguides can be made into nanowires on micro silicon chips to construct ultra-compact, complex optical circuits with high device density.[16] A pair of tandem micro-ring resonators is shown in Figure 1-7 as an example.

The small SOI waveguides have stronger evanescent fields than normal waveguides, as shown in Figure 1-8. In regular waveguides, the evanescent fields only consist of a small fraction of the total propagation fields – even for cladding modes the evanescent field is typically around 1-5%. In SOI waveguides, however, the waveguide cores are so small that they cannot effectively confine the modes. The modes field extend outside the core, and the evanescent fields can interact with the environment. In the case of a silicon nanowire that is less than 300 nm high and 400 nm wide, most of the guided transverse magnetic (TM) mode volume is outside the waveguide core. The evanescent wave of this mode can interact with the medium in the evanescent field, be it gas, liquid, polymer or any other material that covers the waveguide. It has been shown that the interaction is stronger than a free space beam interaction through the gas, liquid, or cladding material directly. This strong interaction is the reason for the very high sensitivity of evanescent field SOI waveguide sensors. [16]

Figure 1-7 Optical microscope image of pair of tandem micro-ring resonators.
Figure 1-8 Evanescent field profile for a typical silicon-on-insulator waveguide. [17]

Many researchers have functionalized SOI waveguides to fabricate chemical sensors, by using micro-extraction films, polymers, antibodies, and porous silica film as the cladding materials.[18] In these applications, analytes are adsorbed into the cladding or attach to the antibodies on the waveguide surfaces. As a consequence, the cladding’s refractive index changes influence the propagated modes through their interaction with the evanescent fields and cause optical phase shifts. These phase shifts can be measured by using either Mach-Zehnder interferometers or micro-ring resonators.

1.5.1 Waveguide Mach-Zehnder interferometers

In a Mach-Zehnder Interferometers (MZI), light from a bus waveguide is split into two optical paths and then recombined, producing a two-beam interference pattern. One optical path serves as a reference arm, and the other one acts as a sensing arm. The intensity of the interference patterns \(I \) is governed by

\[
I = \frac{I_0}{2} \left[1 + \cos \left(\frac{2\pi}{\lambda} (n_{e,sen} L_{sen} - n_{e,ref} L_{ref}) \right) \right]
\]

(1.6)

Here, \(I_0 \) is the original light intensity, \(n_{e,sen} \) and \(n_{e,ref} \) are the effective refractive indices of the sensing and reference arm and \(L_{sen} \) and \(L_{ref} \) are the length of the respective interferometer arms.
Mach-Zehnder interferometers constructed with silicon nanowires on silicon-on-insulator (SOI) chips are shown in Figure 1-9. In our case of such a “balanced MZI”, the reference arm is buried under a protective layer of SiO$_2$, while the sensing arm is open to sense surrounding refractive index change. The sensing arm can be coated with a thin film, which can adsorb analytes and thereby changes its refractive index. This index change affects the index contrast Δn and therefore changes the interference pattern. As a result, the MZI have great potential to make chemical sensors.

1.5.2 SOI Ring Resonators

In a SOI ring resonator, a closed-loop waveguide ring is placed closely adjacent to an optical bus waveguide. An optical profiler image of a 936 μm long spiral ring resonator on a SOI chip is shown in Figure 1-10. The light that travels through the bus waveguide couples strongly into the ring at certain wavelengths. These wavelengths, called resonance wavelengths, correspond to integer fractions of the circumference of the ring. The relationship between resonance mode order (m), resonance wavelength, effective refractive index (n_e), and ring circumference (L) is shown in the equation (1.7).

$$m\lambda_r = n_e L$$ (1.7)

At the resonance wavelengths, light is coupled into the ring, and its energy is eventually dissipated, causing dips (resonance peaks) in the transmission spectra of the bus waveguide. The wavelengths between
the resonance peaks are called “free spectral range (FSR)” as illustrated in Figure 1-11. [17] Note in the transmission spectra the distances between two neighboring peaks are almost identical for a set of resonance peaks generated by one resonance ring. That is because although n_{ef} is different at different wavelengths, in a narrow wavelength range, the variations between those free spectral ranges are quite small. In our experiments, the resonance wavelength can be determined by fitting the resonance peaks with Lorentzian functions. As the resonance peaks are sensitive to the surrounding medium’s refractive index within the evanescent wave range (0-400 nm), we can develop chemical- and bio-sensors by functionalizing the ring with special coatings to adsorb the chemicals and bio-analytes of interest. Details on these coatings will be discussed in chapter 2.

Figure 1-10 Optical microscope image of a 936 µm long spiral ring resonator on a SOI chip. [17]

Figure 1-11 Resonance spectra of a 936 µm long spiral ring resonator. A signal peak can be fitted with a Lorentzian function, as shown on the right. [17]
Chapter 2

Evanescent Wave Sensor Functionalization Methods

Evanescent wave sensors measure surrounding medium refractive index changes within the evanescent field ranges. One challenge for refractive index sensing is that the medium’s refractive index can be influenced by many factors, including selective binding, unselective binding, density (pressure) change, and temperature change, etc. [19] As a result of these interferences, numerous surface functionalization methods have been developed to make the chemical or biological sensors more selective. Coating the sensor surface with a layer of molecules or a layer of a micro-extraction phase that can selectively bind with or extract the analytes of interest brings another benefit: the coatings can adsorb analytes from the air or bulk solutions, thereby increasing the effective concentrations interacting with the evanescent fields, and thus lowering the detection limits. A few commercial evanescent wave-based chemical or biological sensors are summarized in Table 2-1.

Table 2-1 Commercial optical waveguide chemical- and bio- sensors.

<table>
<thead>
<tr>
<th>Functionalization group</th>
<th>Analytes or goals</th>
<th>Detection Method</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>fluorescent probe molecule</td>
<td>Toxins, pathogens, explosives, environmental contaminants</td>
<td>Evanescent wave-based fluorescence (RAPTOR and BioHawk)</td>
<td>Research International [20]</td>
</tr>
<tr>
<td>fluorescent probe molecule</td>
<td>Disease diagnosis and toxin quantitation</td>
<td>Planar waveguide fluorescence immunoassay array system</td>
<td>MBio Diagnostics [21]</td>
</tr>
<tr>
<td>carboxymethyl-dextran and polycarboxylate</td>
<td>Drug discovery</td>
<td>Waveguide interferometer integrated microfluidics</td>
<td>Creoptix [22]</td>
</tr>
<tr>
<td>Antibody</td>
<td>Bacteria, viruses, yeast, biomarkers</td>
<td>Waveguide interferometry</td>
<td>Ostendum [23]</td>
</tr>
<tr>
<td>Proteins</td>
<td>Drug discovery</td>
<td>Surface plasmon resonance</td>
<td>Biacore [25]</td>
</tr>
</tbody>
</table>

Three common functionalization methods are discussed in this chapter: bio-molecule functionalization, polymer functionalization, and porous silica functionalization. The porous silica functionalization, as the chosen method for this research, is discussed in some detail.
2.1 Bio-molecule Functionalization for Biosensors

2.1.1 Antibody Functionalization

Antibodies are proteins generated by animal immune systems to bind pathogens. They are widely used in biosensor functionalization for several reasons. First, they greatly increase the sensor sensitivities and selectivities due to their specific binding abilities with target molecules. This reduces the necessity for sample purification and preconcentration. Second, different pathogens have different corresponding antibodies. An antibody biosensor platform can easily be expanded by exchanging the antibodies, which are readily available. As a result, this method is quite versatile. Third, this method is flexible: antibodies can be modified to have high affinities to particular analytes or to be responsive to related analytes. Also, methods to attach antibodies on sensor surfaces are available in the literature from many years of intensive studies. [19]

However, antibody functionalization has several disadvantages. First, antibodies are proteins, which are only stable in a narrow range of environmental conditions, including pH, temperature, and ionic strength. As a result, many bio-sensors can only be operated inside laboratories in a well-conditioned system. Reversibility and reproducibility are poor for some antibodies. Some antibodies are not selective enough, giving false positive, while false negative results (“failure to detect”) arise when antibodies have degraded, become detached, or blocked by small molecule interferences. [19] Antibodies do not generally exhibit strong responses to small molecules or metal ions.

2.1.2 Aptamers Functionalization

Aptamers have been developed as an alternative to antibodies to overcome some of the disadvantages with antibodies. They are custom-synthesized nucleic acid sequences that can selectively bind target molecules. As a result, they are also known as “synthetic antibodies”. Aptamers can be designed and synthesized by a method called “systematic evolution of ligands by exponential enrichment (SELEX)” to have a specific binding ability to target analytes. As nucleic acids can tolerate harsher environmental conditions than proteins, an aptamer biosensor can work in a wider range of environmental conditions,
making them better candidates than antibodies for field-deployable environmental sensors. Different aptamers have been developed for pathogen sensing [26], mercury ion sensing [27], and algae toxin sensing [28].

2.1.3 Other Molecules for Biosensor Functionalization

Other less commonly used bio-functionalization methods include those with bacteriophages and carbohydrates. Phages are viruses that can bind to the surface of bacteria before injecting their DNA or RNA into the bacteria and consuming the hosts. The specific binding abilities between phages and bacteria have been used to design selective sensors for target bacteria. [29]

Carbohydrates have also been used as binding groups for pathogenic analytes. [30] Compared to antibodies, they are stable over a larger range of pH and temperature, but their selectivity and affinities (related to sensitivities) are much lower.

2.2 Polymer Functionalization

2.2.1 Molecularly Imprinted Polymer Functionalization

Molecularly Imprinted Polymers (MIPs) are polymers generated via polymerization of monomers and cross-linking agent in the presence of target molecules (template). After the polymerization, the target molecules are removed, leaving cavities that were previously occupied by the templates. The polymer shows a high affinity for the target molecules, because of the cavities’ specific shapes and binding site positions.[31] A scheme of this process is shown in Figure 2-1. Researchers have developed a TNT-imprinted polymer as functionalization coating on a surface plasmon resonance (SPR) sensor surface. When the polymer adsorbed TNT, its refractive index increased and thereby shifted the SPR angle. The detection limit was shown to be as low as 1×10^{-8} mol/L. The sensor had no response to TNT analogs, such as 2,4,5-trinitrotoluene and 1,3,5-trinitrohexahydro-1,3,5-triazine, at a concentration of 1×10^{-4} mol/L. [32]
Figure 2-1 Diagram showing general principle of molecular imprinting. A molecular template (T) is mixed with functional monomers (M) and a cross-linker (CL) resulting in the formation of a self-assembled complex (1). The polymerization of the resulting system produces a rigid structure bearing imprinted sites (2). Final removal of the template liberates cavities that can specifically recognize and bind the target molecule (3). (From [33])

2.2.2 Siloxanes Functionalization for Volatile Organic Compound (VOC) Sensors

Siloxanes, such as poly(dimethylsiloxane) (PDMS), have been used to functionalize chemical sensors for VOCs. [19] These polymers are hydrophobic. Therefore they can adsorb and concentrate organic, non-polar VOCs from aqueous solutions and the gas phase and change their refractive index during the adsorption processes. Hydrophobic polymers can remove VOCs from water and air, so the processes are also micro-extraction processes. Since the adsorption process lacks selectivity, such extraction matrices are best suited if entire classes of compounds need to be quantified. Some studies have been performed to test modifications on siloxanes in an attempt to improve their selectivity. [19]

2.3 Porous Silica Functionalization

Micro/mesoporous silica materials – in essence, very porous forms of glass – have been widely studied in adsorbing, scrubbing, and extracting analytes from liquids. These processes are enabled because of the large surface area of these materials. [34] Their silica glass nature suggests good chemical resistance, high stiffness, good optical properties, and that they are compatible with silica-based optical waveguide sensors, such as long-period fibre gratings (LPG) and silicon-on-insulator waveguide sensors. The materials can be coated on waveguide surfaces using the sol-gel method. [34]

The sol-gel method is a “wet chemistry” process that can be carried out at moderate temperatures. To make homogeneous mesoporous silica, monomers, surfactants (templates), and catalysts are all
dissolved in a solvent and stirred for several hours (“aging”) so that condensation and gel formation happen. After aging, the mixture is dried, and the surfactant is removed by either calcination or solvent refluxing. Two of the common monomers are tetramethoxysilane (Si(OMe)$_4$, TMOS) and tetraethoxysilane (Si(OEt)$_4$, TEOS), and the most common catalysts are acids, such as HCl. The condensation reaction is shown in Figure 2-2.

![Scheme showing the condensation of TEOS and formation of silica network. (from [35])](image)

This siloxane bond formation reaction starts during the aging process and does not stop until the drying process is complete. The reaction is not complete during the gel formation process, in which the surfactants come into play. The surfactants self-assemble into micelles, which may take different shapes such as spheres, rods, cylinders, etc. (see Figure 2-3). These ordered structures act as templates while the silica gel forms around them. Eventually, in the drying stage, the siloxane bond formation is complete, and the silica network becomes stiff. After the surfactant templates are removed, the cavities they occupied become channels and pores. The whole process is shown in Figure 2-4. The choices of templates, concentrations, solvents can be used to control the shape and size of the channels and pores. [34] The sol-gel mixture can be coated on the surface of an optical waveguide after the aging stage and before the drying stage, using various coating methods, such as spin coating and dip coating.[36]
Figure 2-3 Schematic representation of typical micellar mesophases. (from left to right): spherical, rod-like / cylindrical, lamellar / bilayer, inverse spherical, bicontinuous, vesicular. (from [36])

Figure 2-4 Diagram showing the formation of mesoporous silica via a lyotropic liquid crystalline pathway. [37]

Mesoporous silica materials are versatile, as different functional groups can be added to the silica networks. The precursors carrying the functional groups usually contain triethoxysilyl groups to form siloxane bonds with the monomers like TEOS. The following sections will discuss mesoporous silica materials with different functional groups. These groups are selected to bind specifically to non-metal ions (phosphate, nitrate, and ammonium ions) as well as heavy metal ions.

2.3.1 Functionalized Mesoporous Silica as Scrubbing Material for Phosphate and Nitrate ions.

Phosphate and nitrate ions are pollutants in water if their concentrations are above the regulated standards in the particular water systems. Mesoporous silica and alumina are promising materials to scrub these ions from water. [38, 39] Their high affinity for silica makes mesoporous silica coatings also good candidates for sensor materials. To increase its affinity for those ions, functionalization of silica is necessary. Previous research has shown that functionalizing mesoporous silica with amine groups can increase its affinity for phosphate and nitrate ions. [38, 39] (3-Aminopropyl)triethoxysilane (Figure 2-5) is one of the amines that are used to introduce amine groups into mesoporous silica.
2.3.2 Tetrasulfide-functionalized Mesoporous Silica Coatings on LPG Sensor

Tetrasulfide groups have been introduced to mesoporous silica to adsorb heavy metal ions. Previous research has shown that mesoporous silica made by condensation between tetraethoxysilane (TEOS) and bis[3-(triethoxysilyl)propyl]tetrasulfide (TESPT) adsorbs heavy metal ions. [15] One study reported that the tetrasulfide mesoporous silica that was made by condensation between TEOS and TESPT using CTAB as surfactant (ratio CTAB : TEOS : TESPT : NaOH : H₂O = 0.125 : 1.00 : 0.125 : 0.32 : 615) could adsorb Ag(I) and Cd(II) ions up to 6.11%(w/w) and 1.7%(w/w), respectively. [15] The corresponding values of mesoporous silica powder without tetrasulfide groups were 0.34%(w/w) and 0.01%(w/w). This proved that the tetrasulfide-functionalized mesoporous silica did have high affinity for Ag(I) and Cd(II) ions.

In 2006, Hanumegowda et al. reported a thiol monolayer functionalized microsphere optical ring resonator as an optical sensor for Hg(II) ion detection. The detection limit was approximately 50 ppb (ppb defined as ng/mL), and Hg(II) ions bound to thiol group in a 1:3 ratio. They developed a Langmuir model to describe the adsorption process. [40]

A refractive index sensor based on a long-period grating was coated with a tetrasulfide-functionalized mesoporous silica film at Queen’s University. Du et al. (2010) coated a tetrasulfide-functionalized mesoporous silica film on the LPGs to make sensors for Pb(II) and Hg(II) ions. [15] Figure 2-6 shows the scheme and reactions used in the study. In addition to all the reagents mentioned earlier, titanium tetraisopropoxide (Ti(‘OPr)₄) was used to tune the refractive index of the film to match the refractive index of the cladding. The films were coated on LPGs, whose resonance peak shifted when the films were immersed in Pb(II) solutions at different concentrations (Figure 2-7). The coatings could be recovered by immersing the film in 1 M HCl solution for 20 minutes. The film eventually degraded after repeated testing.
Based on this research, the plan was made to coat tetrasulfide-functionalized mesoporous silica film on silicon-on-insulator (SOI) chips. In comparison to coating film on the optical fibre surface, the coating on the upper surface of flat SOI chips is more stable, less strained and therefore is much less likely to crack. Instead of the dip coating method as was done in the research of Du et al., the spin coating method will be used to control the film thickness and to improve reproducibility. Moreover, SOI chips are easier to interface with microfluidics, making them capable of measuring the heavy metal ion adsorption and desorption kinetics in small flowing samples of aqueous solutions.

![Diagram]

Figure 2-6 Synthesis of tetrasulfide- and Ti-containing mesoporous materials as coatings for LPG chemical sensors. [15]

![Graph]

Figure 2-7 Optical response for the LPG coated with the PMO film to aqueous DMSO solutions (RI = 1.402 at 1550 nm) of Pb(II) of increasing concentration as observed by the LPG attenuation spectra. (inset) Resonant peak positions shift as a function of analyte concentration. [15]
Chapter 3

Theory of Adsorption and Desorption, Models, and Equations

This chapter discusses the theories of adsorption and desorption, which set the theoretical foundation for the discussion of metal ion adsorption and desorption processes on thin mesoporous silica films. Kinetic models are built, and equations are derived that serve to fit the experimental data in subsequent chapters.

3.1 Adsorption Theory

The attachment of particles to a surface is called adsorption, and the reverse process is called desorption. The extent of surface coverage is defined as fractional coverage, θ.

$$\theta = \frac{\text{number of adsorption sites occupied}}{\text{Total number of adsorption sites}}$$ \hspace{1cm} (3.1)

For gas-solid adsorption, the variation of θ with pressure at a chosen temperature is called the adsorption isotherm. [41] Many theories have been proposed to describe and understand surface adsorption and desorption. Four of the most important ones are discussed in this chapter, including the Langmuir adsorption theory, Brunauer–Emmett–Teller (BET) theory, the Temkin theory, and the Freundlich theory. The second part of this chapter discusses models based on the Langmuir Theory.

3.1.1 The Langmuir Adsorption Theory

The basic assumptions for Langmuir adsorption is (1) monolayer adsorption, (2) only one kind of adsorption sites exists and all sites are equivalent, and (3) the ability of a molecule to adsorb at a given site is independent of the occupation of neighboring site, which implies no interactions between adsorbed molecules. [41] Under these three assumptions, the Langmuir isotherm is:

$$\theta = \frac{Kp}{1 – Kp}$$ \hspace{1cm} (3.2)
where K is the equilibrium constant, and p is pressure. Figure 3-1 shows isotherms for different values of K. Since K is a function of temperature, these could, for example, be isotherms for a process at three different temperatures. [41] From the figure, it is clear that the fractional coverage approaches one at high pressure. For a given pressure, the fractional coverage is high when K is high.

![Figure 3-1](image)

Figure 3-1 *Langmuir isotherm for non-dissociative adsorption for different K values.*

3.1.2 The Brunauer–Emmett–Teller (BET) Theory

The Brunauer–Emmett–Teller (BET) theory is based on the assumption that the initially adsorbed layers can act as a substrate for further adsorption. The BET isotherm is:

$$
\frac{V}{V_{\text{monolayer}}} = \frac{cz}{(1-z)[1-(1-c)z]}
$$

Where $z = p/p^*$, p is pressure and p^* is the vapor pressure above a layer of adsorbate that is more than one molecule thick and which resembles a pure bulk liquid. V is the volume of the adsorbed material; $V_{\text{monolayer}}$ is the volume of a single layer of adsorbate; and c is a constant. [41] Figure 3-2 shows the BET isotherm.
3.1.3 The Temkin Theory

The Temkin Theory is a modification of Langmuir theory. The changed assumption is that some sites are more favorable for adsorption than other sites and are occupied first. The Temkin isotherm is:

$$\theta = c_1 \ln(c_2 p)$$ \hspace{1cm} (3.4)

where c_1 and c_2 are constants. [41]

3.1.4 The Freundlich Theory

The Freundlich Theory considers the substrate - substrate interactions. The Freundlich isotherm is:

$$\theta = c_1 p^{1/c_2}$$ \hspace{1cm} (3.5)

where c_1 and c_2 are constants. [41]

3.2 Models and Equations

This section discusses the models used in this thesis to analyze the experimental data.

3.2.1 Single Adsorption Site Model

In a typical experiment, a metal ion solution sample with a known concentration flows above the coating to which the metal ion is adsorbed. This binding process involving metal ion M binding to single binding site Y can be described by the equilibrium reactions
\[M + Y \xrightarrow{k_a}{k_d} [MY] \] (3.6)

where \(k_a \) and \(k_d \) are the forward reaction constant and backward reaction constant, respectively.

In 1898, Lagergren reported a first order rate equation to describe liquid to solid surface adsorption processes for the above reaction.[42] Under the assumption that (a) all the binding sites are equivalent, (b) the adsorbed ions do not interact with unoccupied binding sites (Langmuir assumption), and (c) the supply of metal ions \(M \) is infinite, the kinetic equation to describe the adsorption process can be represented as

\[
\frac{d}[MY]{dt} = k_a[M][Y] - k_d[MY] \] (3.7)

where \([MY] \) (mol/g) is the loading of the adsorbed metal, \([Y] \) (mol/g) is the density of the empty binding sites, \([M] \) is the constant concentration (mol/L) of the metal ions in solution, and \(k_a \) (L mol\(^{-1}\) s\(^{-1}\)) is the second order rate constant. The equation can be simplified by writing the absorption as a first order process with \(k_a' = k_a[M] \) as the pseudo-first order rate constant of adsorption (second\(^{-1}\)).

\[
\frac{d}[MY]{dt} = k_a'[\[Y\]_0 - [MY]] - k_d[MY] \]

(3.8)

By integrating Equation (3.8) one obtains

\[
[MY](t) = A \exp\left(-\frac{k_d}{k_a'} t\right) + \frac{k_a'[\[Y\]_0]}{(k_a' + k_d)} \] (3.9)

where the total binding site concentration is the sum of empty and occupied binding sites

\[
[\[Y\]_0 = [Y] + [MY] \] (3.10)

The factor \(A \) can be obtained from the boundary condition \([MY](t=0) = 0\) to give

\[
[MY](t) = \frac{k_a'[\[Y\]_0]}{(k_a' + k_d)}\left[1 - \exp\left(-\frac{k_d}{k_a'} t\right)\right] \] (3.11)

At equilibrium \((t \to \infty)\), the equation simplifies to
Therefore, the equilibrium capacity for the metal ions in the film depends not only on the rate constants but also on the total number of available binding sites \([Y]_0\) as well as the metal ion concentration in solution. This dependence on the dissolved ion concentration can be exploited to linearize equation (3.12) and to obtain

\[
\frac{1}{[MY]_{\text{max}}} = \frac{1}{[Y]_0} + \frac{k_d}{k_a [Y]_0 [M]} \quad (3.13)
\]

Once values for \([MY]_{\text{max}}\) are obtained using fits of experimental adsorption curves to equation (3.13) at different concentrations \([M]\), one can obtain the number of available sites \([Y]_0\) from the intercept in a linear plot of \([MY]_{\text{max}}^{-1}\) versus \([MY]^{-1}\). The ratio of the rate constants is found from the corresponding slope.

The concentration of the bound metal ions \([MY](t)\) is related to refractive index through the Lorentz-Lorenz equation – see Chapter 3 section 3.3.

The rate equation describing the desorption processes can be derived from equation (3.7)

\[
\frac{d[MY]}{dt} = k_a [M][Y] - k_d [MY] \quad (3.14)
\]

When rinsing with deionized water (DI Water) \([M] = 0\) and the remaining expression is readily integrated to yield

\[
[MY](t) = [MY]_0 \left[\exp(-k_d t) \right] \quad (3.15)
\]

Here, \([MY]_0\) is the quantity of the ions in the coating at the start of the desorption process \(t = 0\). If the film had been completely equilibrated before desorption, \([MY]_0 = [MY]_{\text{max}}\), but in the experiments described in this thesis, this is typically not the case.

3.2.2 Double Adsorption Site Model

For adsorption of ions from the liquid into a coating having two distinct binding sites \(X\) and \(Y\), I assume that the two binding sites are independent, i.e. that ions do not migrate between binding sites and,
also, that there are no interactions between adsorbed ions. The adsorption and desorption equations are then reduced to two parallel and independent equilibria

\[
M + X \xrightarrow{k_{a,x}} [MX] \quad \text{and} \quad M + Y \xrightarrow{k_{a,y}} [MY]
\]

and therefore

\[
\frac{d}{dt} ([MX] + [MY]) = k_{a,x} [M][X] - k_{d,x} [MX] + k_{a,y} [M][Y] - k_{d,y} [MY]
\] (3.17)

where, as before, each of the two pseudo-first-order rate constants for adsorption depends on the constant concentration of metal ions, \(k_{a,x}' = k_{a,x} [M] \) and \(k_{a,y}' = k_{a,y} [M] \).

Integration of the respective rate laws gives

\[
([MX] + [MY])(t) = \frac{k_{a,x} [X]_0}{(k_{a,x} + k_{d,x})} \left[1 - \exp\left(-\left(k_{a,x} + k_{d,x}\right)t\right) \right] + \frac{k_{a,y} [Y]_0}{(k_{a,y} + k_{d,y})} \left[1 - \exp\left(-\left(k_{a,y} + k_{d,y}\right)t\right) \right]
\]

\[
q(t) = q_{a,x} \left[1 - \exp\left(-\left(k_{a,x} + k_{d,x}\right)t\right) \right] + q_{a,y} \left[1 - \exp\left(-\left(k_{a,y} + k_{d,y}\right)t\right) \right]
\] (3.18)

where \(q(t) = ([MX]+[MY])(t) \) describes the total concentration of adsorbed ions in the coating at time \(t \).

The quantities, \(q_{a,x} \) and \(q_{a,y} \), are the adsorption capacities at equilibrium for each of the two binding sites, respectively.

Similar to equation (3.18) the desorption rate under flowing DI water can be described as a sum of two independent processes

\[
([MX] + [MY])(t) = [MX]_0 \exp(-k_{d,x} t) + [MY]_0 \exp(-k_{d,y} t)
\] (3.19)

where \([MX]_0\) and \([MY]_0\) are the metal loadings in the coating at time \(t = 0 \), while \(k_{d,x} \) and \(k_{d,y} \) are the first order rate constants associated with the desorption processes for each of the two binding sites, respectively.
In the experiments, the values for the desorption rate constants are valuable as they allow one to obtain the adsorption rate constants, \(k_a' \), and the number of respective available binding sites \([X]_0\) and \([Y]_0\) using the fitting parameters for the adsorption process with equation (3.18). These fitting parameters can be obtained by fitting the measured refractive index change to equation (3.19).

While the desorption processes are first order reactions and the rate constants are obtained directly from either a fit to Equation (3.15) or (3.19), the adsorption process is a second order reaction with a rate constant \(k_a' = k_a[M] \) that depends on the concentration of the metal ion in solution and the measured pseudo-first order rate constant, \(k_a \). Therefore, the second order rate constant is obtained as the slope of a linear fit of \(k_a \) as a function of \([M]\). See Chapter 5 for the application of this method.

3.2.3 Method of Initial Rates Calculation

The rate constants for single binding sites can be obtained from the slope of the response curve by taking the derivatives of equation (3.11) and (3.15)

\[
\text{adsorption: } \frac{d[MY](t)}{dt} \bigg|_{t=0} = k_a [M][Y]_0
\]

\[
\text{desorption: } \frac{d[MY](t)}{dt} \bigg|_{t=0} = -k_d [MY]_0
\]

(3.20)

When two binding sites are present, the derivatives of equations (3.18) and (3.19) are taken.

\[
\text{adsorption: } \frac{d([MX] + [MY])(t)}{dt} \bigg|_{t=0} = (k_{a,x} [X]_0 + k_{a,y} [Y]_0)[M]
\]

\[
\text{desorption: } \frac{d([MX] + [MY])(t)}{dt} \bigg|_{t=0} = -k_{d,x} [MX]_0 - k_{d,y} [MY]_0
\]

(3.21)

From both equations, one would expect a linear dependence of the initial adsorption rate on the concentration of metal ions \([M]\). This is important, because the initial rate can be used to quantify \([M]\) after calibration and regardless of the uptake mechanism.
3.3 Relationship Between Metal Loading in the Silica Film and Refractive Index

Next, the concentration of the metal ions \(q(t) = ([MX]+[MY])(t) \) in the coating must be related to the measured refractive index \(n(t) \) of the coating. It will be shown below that the correlation between the metal ion concentration in the film and its refractive index is linear to a good approximation.

It was demonstrated previously that the refractive index of mixtures of solvents could be readily calculated using the indices of the components and the additivity of the polarizabilities.[43] The polarizabilities of the different solutions are expected to be a weighted sum of the polarizabilities of the constituents.

\[
\alpha_{LL}(x) = \sum_i x_i \alpha_i
\] (3.22)

This equation has been validated several times - most recently by Saunders et al. [17]. Only slight deviations (<1%) have been observed. In all systems described in this thesis, the material consists of a water-filled mesoporous silica film that contains metal ions in variable but comparably low concentrations. To determine the polarizabilities, \(\alpha_1 \) and \(\alpha_2 \), of the neat components, their respective known densities, \(\rho \), and the measured refractive indices, \(n_i \), are used with the Lorentz-Lorenz equation

\[
\frac{n_i^2 - 1}{n_i^2 + 2} = \frac{\rho_i N_A \alpha_i}{3 \varepsilon_0 M_i}
\] (3.23)

where \(N_A \) is Avogadro’s number, \(M_i \) is the respective molar mass, and \(\varepsilon_0 \) is the vacuum permittivity. The refractive index of mixtures can accordingly be calculated from mole fractions \(x_1 \) and \(x_2 = (1 - x_1) \), the density of the mixture, and the electronic polarizabilities and densities of the neat compounds.

In this thesis the water filled mesoporous silica film can be treated as a binary mixture of glass (\(M_{\text{glass}} = 60\text{g/mol} \)) and water (\(M_{\text{water}} = 18\text{ g/mol} \)) with approximate indices of \(n_{\text{SiO}_2} = 1.45 \) and \(n_{\text{H}_2\text{O}} = 1.31 \) at 1550 nm and densities of \(\rho_{\text{SiO}_2} = 2400 \text{ kg/m}^3 \) and \(\rho_{\text{H}_2\text{O}} = 1000 \text{ kg/m}^3 \), respectively. By combining equation (3.22) with (3.23), the refractive index of the mesoporous silica film is obtained.
\[
\frac{n_{\text{film}}^2 - 1}{n_{\text{film}}^2 + 2} = \frac{N_A}{2\varepsilon_0 M_{\text{film}}} \left(x_{\text{water}} \alpha_{\text{water}} + x_{\text{glass}} \alpha_{\text{glass}} \right) \\
= \frac{\rho_{\text{film}}}{M_{\text{film}}} \left(x_{\text{water}} \frac{M_{\text{water}}}{\rho_{\text{water}}} n_{\text{water}}^2 + 1 + x_{\text{glass}} \frac{M_{\text{glass}}}{\rho_{\text{glass}}} n_{\text{glass}}^2 + 1 \right) \\
= \left(x_{\text{water}} \frac{M_{\text{water}}}{\rho_{\text{water}}} n_{\text{water}}^2 + 1 + (1 - x_{\text{water}}) \frac{M_{\text{glass}}}{\rho_{\text{glass}}} n_{\text{glass}}^2 + 1 \right) \\
\]

(3.24)

In this calculation, the volume of the films is assumed to remain constant as the fraction of water is changed, i.e. the density of the film can be obtained by a weighted sum of the density of its components. The refractive index of the film is then obtained as a function of the mole fractions of water and glass in the system, as shown in Figure 3-3. This function is not linear as has sometimes been assumed in the literature.

![Graph](image.png)

Figure 3-3 Refractive index of porous silica film with water filling its pores as a function of the mole fraction of water. The refractive index decreases as the water mole fraction increases.

Similarly one can determine the dependence of the system’s refractive index on the loading of the film with metal ions. The above calculation is repeated but using the polarizability, \(\alpha_{\text{Pb}} \) and mole fraction, \(x_{\text{Pb}} \) of lead.
\[
\frac{n_{\text{system}}^{2} - 1}{n_{\text{system}}^{2} + 2} = \frac{N_{\Lambda}}{3e_{0}} \frac{\rho_{\text{system}}}{M_{\text{system}}} \left(x_{pb} \alpha_{pb} + (1 - x_{pb}) \alpha_{\text{film}} \right)
\]

\[
= \frac{\rho_{\text{system}}}{M_{\text{system}}} \left(x_{pb} \frac{N_{\Lambda} \alpha_{pb}}{3e_{0}} + (1 - x_{pb}) \frac{M_{\text{film}} n_{\text{film}}^{2} - 1}{\rho_{\text{film}} n_{\text{film}}^{2} + 2} \right)
\]

Several different values of \(\alpha_{Pb^{2+}}\) were found in different published papers. Dimitrov and Sakka (1995) reported \(4.031 \times 10^{-40}\) \(\text{F} \cdot \text{m}^{2}\) for \(\text{Pb}^{2+}\) cation and \(3.838 \times 10^{-40}\) \(\text{F} \cdot \text{m}^{2}\) for \(\text{PbO}\) oxide. [44] Thierfelder et al. (2008) reported \(7.79 \times 10^{-40}\) \(\text{F} \cdot \text{m}^{2}\) for \(\text{Pb}\) atom [45]. M. E. Hanni et al. (2010) reported \(2.24 \times 10^{-40}\) \(\text{F} \cdot \text{m}^{2}\) for gas phase \(\text{Pb}^{2+}\) cation by resonant excitation Stark ionization spectroscopy. [46] The exact polarizability value in this work should be in this range, but it is hard to calculate or measure. For the following calculation, \(4.031 \times 10^{-40}\) \(\text{F} \cdot \text{m}^{2}\) was used. However, it should be remembered that this value is subject to change from future research. Mon et. al. (1979) reported \(3.094 \times 10^{-40}\) \(\text{F} \cdot \text{m}^{2}\) as the polarizability for \(\text{Hg}^{2+}\), and this value was used in the following calculation. [47] Other constants used for the data analysis in the following chapters are listed in Table 3-1. The number in the brackets are the uncertainty of the least decimal places.

Table 3-1 Pb(II) and Hg(II) doping response to the MPS film (wet and dry)

<table>
<thead>
<tr>
<th></th>
<th>Pb(II)</th>
<th>Hg(II)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha(\text{F} \cdot \text{m}^{2}))</td>
<td>(4.03 \times 10^{-40}) [44]</td>
<td>(3.09 \times 10^{-40}) [47]</td>
</tr>
<tr>
<td>Density (g/cm(^3))</td>
<td>(11.34 \times 10^{3}) [48]</td>
<td>(14.184 \times 10^{3}) [48]</td>
</tr>
<tr>
<td>Slope (RIU/x(_i))</td>
<td>0.780(4)</td>
<td>1.209(5)</td>
</tr>
<tr>
<td>Atomic weight (g/mol)</td>
<td>207.2 [41]</td>
<td>200.59 [41]</td>
</tr>
<tr>
<td>RIU/Refractive index/Mass fraction (wet) (RIU*g(film)/g(metal))</td>
<td>0.148(2)</td>
<td>0.236(3)</td>
</tr>
<tr>
<td>RIU/Refractive index/Mass fraction (dry) (RIU*g(film)/g(metal))</td>
<td>0.113(1)</td>
<td>0.181(2)</td>
</tr>
</tbody>
</table>
To estimate Pb(II) and Hg(II) doping response of the film, we assume \(x_{\text{water}} = (1 - x_{\text{glass}}) = 0.3 \) to 0.5 and calculate \(M_{\text{film}} = 39.2 \text{ g/mol} \), \(\rho_{\text{film}} = 1700 \text{ kg/m}^3 \), and \(n_{\text{film}} = 1.3624 \). Figure 3-4 shows the index as a function of the mole fraction of Pb in the film, for films with different porosities \((x_{\text{water}} = 0.3, 0.4, 0.5) \)

![Graph 1](image1.png)

Figure 3-4 Porous silica refractive index as a function of Pb(II) and Hg(II) mole fraction at different porosity \((x_{\text{water}} = 0.3, 0.4, 0.5) \). (Left) The refractive index changes linearly with Pb(II) loading at low Pb loadings (0-0.01). (Right) The refractive index changes linearly with Hg(II) loading at low Hg loadings (0-0.01). The maximum loading for both ions in this thesis is well below 0.01, which is in the linear range.

![Graph 2](image2.png)

Figure 3-5 Pb doping response on porous silica film as a function of porosity. In the range of \(x_{\text{water}} = 0.3-0.5 \), the doping responses are varying by a small amount, centered at 0.78 RIU/mole fraction for Pb, and 1.21 RIU/mole fraction for Hg.
It is apparent that up to a loading of 1 mol% of Pb(II) and Hg(II) the film refractive index changes linearly. The effect of doping the water-filled film with Pb(II) and Hg(II) depends somewhat on the porosity. In the porosity range of \(x_{\text{water}} = 0.3-0.5 \) the doping responses (the slopes in Figure 3-4) are 0.780 RIU/mole fraction and 1.209 RIU/mole fraction for Pb(II) and Hg(II), respectively.

It is practical to convert the unit “mole fraction” to mol(Pb)/mol(SiO\(_2\),H\(_2\)O) and mol(Hg)/mol(SiO\(_2\),H\(_2\)O) to weight fraction using \(M_{\text{film(wet)}} = 39.2 \) g/mol and \(M_{\text{film(dry)}} = 30.0 \) g/mol. The results are also shown in Table 3-1.

The refractive index changes observed in these experiments are in the range of \(\Delta n = 10^{-5} \) to \(10^{-3} \) RIU, i.e. they are entirely in the linear portion of Figure 3-4. Assuming the porosity of this film to be near \(x_{\text{water}} = 40\% \), it can be concluded that the mole fraction of Pb or Hg in the films is in the linear range of \(x_{\text{Pb}} = 10^{-5} \) to \(10^{-3} \) (10\(^{-3}\) to 0.1 mol %).

Most importantly, these estimates show also that the rate constants obtained from the kinetic response curves can be directly related to the concentration of the lead ions in the film. The curves are obtained by measuring the resonance peak shifts of the ring resonators, which are then converted into refractive index changes using an experimentally obtained calibration curve. Using the linear relation of \(\Delta q(\text{Pb}) = 0.780 \) RIU/mole fraction(Pb) or \(\Delta q(\text{Hg}) = 1.209 \) RIU/mole fraction(Hg), all response curves can be readily rescaled to reflect Pb or Hg concentration changes in the film.
Chapter 4
Experimental Design, Setup, Data Collection, and Processing

This chapter discusses the temperature correction on tandem ring resonator, coupling laser light into and out of the waveguide, data collection and data processing, microfluidic device development, liquid sample pumping system, ring resonator calibration, as well as chip coating and post-treatment procedure. The SOI chips used in this research are provided by the National Research Council of Canada (Ottawa, ON).

4.1 Temperature Effects and Tandem Ring Resonators

A pair of tandem ring resonators with a large ring and a small ring sharing the same bus waveguide was used in this research. Figure 4-1(left) shows a microscope image of the ring resonators that are a part of the SOI chip.

![Microscope image of tandem ring resonators](image.jpg)

Figure 4-1 Optical profilometer image and a transmission spectrum of a tandem ring resonator. (Left) the sensing ring and reference ring had circumferences of 185 μm and 134 μm, respectively. (Right) The resonances of the two rings could be separated as they have different free spectral ranges (Δλ_{FSR}). Here the free spectral range of the sensing and reference rings were Δλ_{FSR} = 2.5 nm, 4.0 nm respectively. The sensing resonances were denoted by the yellow stars and the reference resonances with blue squares. From [17]

The tandem ring resonators were designed to correct wavelength shifts caused by thermal expansion of the ring-resonators. This was important during the test as temperature fluctuations could be a
major source of error, especially during short- to long-term testing (more than one hour). The reference ring (the smaller one of the two) was covered in a layer of silica so that its evanescent field did not interact with analytes. The sensing ring (the larger one of the two) was not covered. The temperature effects on the reference ring and sensing ring were determined to be 49.9 pm/K and 62.5 pm/K, respectively.[49] The corrected peak shifts were readily calculated using

$$\lambda_{sens,corr}(t) = \lambda_{sens}(t) - \left[\left(\lambda_{ref}(t) - \lambda_{ref}(t=0) \right) \times \left(\frac{49.9}{62.5} \right) \right]$$

(4.1)

where λ_{sens} and λ_{ref} represent sensing peak positions and reference peak positions, $\lambda_{sens,corr}$ represent temperature corrected sensing peak position.

The effect of the temperature correction using simultaneous measurements of the resonance wavelength of the reference ring is shown in Figure 4-2. The sensing signal was much more obvious after the signal was corrected for the periodic temperature fluctuations caused by the air conditioning system.

A simple experiment was conducted to confirm that the fluctuations were indeed caused by the varying temperature in the lab. The resonance wavelength of the reference ring was related to the room temperature, which was measured by using a USB temperature probe (OM-EL-USB Omega, Laval, QC), as shown in Figure 4-3. All the data reported in this thesis were temperature corrected unless specifically noted otherwise.
Figure 4-2 Compensation of temperature effects from the resonance shifts of the reference ring of a tandem ring resonator. A) The resonance wavelength of the sensing and reference peaks shown over a 6000 s period. B) The temperature-related resonance shifts have been subtracted from the sensing and reference rings using temperature sensitivities of 49.9 pm/°C and 62.5 pm/°C for the two rings respectively. From [17]

Figure 4-3 The top blue dots indicate the temperature data measured by the USB temperature probe. The bottom red dots show the reference signal over the same period. Their agreement shows that the room temperature fluctuation was the main reason for reference ring signal fluctuation. From [17]
4.2 Optical Experimental Setup and Methods

The experimental setup details are discussed in this section. The details include the light coupling method, data acquisition and processing, liquid sample pumping system, ring resonator calibration, and chip coating.

4.2.1 Coupling Laser Light into/out of the Waveguides

In this research, the laser light was coupled into and out of the chip using the “edge-on coupling” method. Other research groups used devices that were equipped with surface relief gratings which permit facile coupling of the light into the bus waveguide. In these experiments, this method was not easily used because the surface coatings would cover the relief gratings. Coated gratings were not necessarily able to fulfill their function. In the present experiments, the light was coupled into the chip from a conically tapered single-mode optical fibre and was coupled out of the chip using a multi-mode fibre (Figure 4-4). The focusing from the tapered fibre significantly reduced the mode mismatch in the coupling process. The disadvantage, however, was that the fibre and the waveguide end must be aligned perfectly. Even the slightest mismatch caused a large loss in signal intensity. As a result, high precision alignment stages (Newport ULTRAAlign Model 561D, Newport PCR-3, Newport 561-VH) were used to adjust and maintain fibre and chip alignment, as shown in Figure 4-5. The alignment stage was built by Dr. John Saunders and Dr. Jack Barnes. [17]

Even equipped with high precision alignment stages, the signals were still sensitive to alignment stage instability and mechanical vibration. Manual adjustments were required every 5 – 20 minutes to maintain a decent alignment. The fibres and waveguide would have to be fused permanently through V-groove assemblies to eliminate the alignment issues.
Figure 4-4 Schematic of coupling methods to get light into photonic waveguides. (a) Grating coupling, (b) prism coupling, (c) front-face coupling via optical lens (d) front-face coupling via optical fibre. (From [50])

Figure 4-5 Photo of the alignment stages with the fibers, microfluidics, tubes, and Photodiode detector. The SOI chip was packed in the microfluidics.

4.2.2 Optical Setup

Figure 4-6 shows the schematic of the experimental setup. Briefly, the instrument was constructed by using a tunable external cavity distributed feedback laser source (ANDO AQ4320D), with the power set to 0.5 to 1 mW and wavelength scan range of 1530 – 1570 nm. A fibre polarization controller constructed with three paddles was used to change laser polarization so that exclusively TM modes were coupled into the waveguide. While the polarization was not measured, it was apparent that the signal-to-noise ratio of the resonance peak increased when the polarization was well-controlled. A single-mode fibre (OZ Optics Ltd. Carp, ON, Canada) with convex tip was used to couple the light into chips. A multi-mode fibre (core
diameter = 100 µm, cladding diameter = 140 µm) with a flat facet end was used to couple the light out of the chips. Both the single mode fiber and the multi-mode fiber were mounted on 3-axis precision positioning stages (Newport, Franklin, MA, USA). A digital camera connected to a microscope (Optem Zoom 70XL 7:1 Micro-Inspection Lens System) was placed above the chip’s alignment stage and was used to align the fibers and the waveguide ends. The multi-mode fibre was connected to a photodiode detector (Thor Lab DET10C InGaAs Biased Detector, 700 – 1800 nm), which was used to detect the light signals. The photodiode’s output was sent to a lock-in amplifier (Stanford Research Systems, SR844). The lock-in amplifier also received reference signals at the modulation frequency and the laser ramp voltage from the tunable laser source. The signal intensity from the photodiode detector, the corresponding laser modulation frequency, and the laser ramp voltage signals were collected by an analog to digital converter (A/D) (PMD-1608FS, Measurement Computing, Norton, MA, USA), which sent the data to a computer. A LabVIEW program developed by Saunders et al. was used for data acquisition. [17] A setup scheme was shown in Figure 4-6.

Figure 4-6 Schematic of the experimental setup for SOI chip testing. A tunable external cavity diode laser (λ = 1520-1620 nm) was coupled to a fibre polarization controller to rotate the light to vertically polarized light to couple only TM modes into the SOI waveguides. A tapered single-mode optical fibre was used to couple into the SOI chip and a multi-mode optical fibre (100/140µm) collected the light leaving the chip, which was detected using an InGaAs photodetector. The signal was extracted using a lock-in amplifier and read by the computer using an A/D converter (From [17]).
4.2.3 Experimental Parameter Setting

All the experimental parameters were set in the LabVIEW program, including laser power, wavelength scan range, and scan time. The laser power was set to 0.5 - 1 mW, a range in which the laser power was most stable. The wavelength scan was performed through a continuous ramp, as shown in Figure 4-7. The laser wavelength steadily increases until reaching the end point before jumping back to the starting wavelength, and the process starts again.

The data acquisition rate was determined by the wavelength scan range and the scan time.

\[
Rate_{\text{scan}} = \frac{\text{Range}_{\text{wavelength}}}{t_{\text{scan}}}
\]

(4.2)

The scan rate was chosen to be approximately 1 nm / 10 seconds. In most tests, the wavelength scan range was around 3 nm to include at least one sensing peak and one reference peak, and the scan time was therefore 30 seconds. As each scan can generate only one corrected resonance wavelength \(\lambda_{\text{sens,corr}}\), the actual sample rate was one data point per 30 seconds. If the scan time were too long, the sample rate would not be enough to capture rapid peak shifts. The scan rate was also limited by the requirement to have a high spectral resolution. The effect of the scan time on transmission spectral resolution is shown in Figure 4-8.
Figure 4-8 Comparison of the spectral resolution as a function of laser scan rate over a fixed spectral window. The top row showed spectra when the laser was scanned at rates of 1.3 s/nm, 2.0 s/nm, and 4.0 s/nm. The bottom row shows spectra at rates of 6.7 s/nm, 13.3 s/nm, and 26.6 s/nm. The minimum resolution for accurate measurements depends on the full width at half maximum (FWHM) of the resonances. For the $L = 1.27$ mm ring resonator in this figure, the minimum laser scan rate was 3 s/nm, where each resonance was described by a minimum of 20 points. From [17]

4.2.4 Data Storing and Processing

The experimental data were stored in a data file with four columns of data for each scan. The four columns of data were time (ms), ramp voltage (V), wavelength (nm), and signal intensity (V). During each scan, the signal intensity was graphed against wavelength and shown on the computer so that the tester knew that the alignment was good and the two peaks were in the scan range. In some tests, the sensing peaks shifted out of the scan ranges due to large refractive index changes. In that cases, the data acquisition was restarted to choose a larger scan range. After the experiments, the data was copied into Igor Pro™ 6, where the resonance peaks were fitted by Lorentzian lineshape functions. (Figure 4-9) Automation codes
in Igor Pro™ 6 were developed to process thousands of scanned data sets. The sensing peaks and reference peaks were fitted separately, and the resulting corrected wavelength was obtained using equation (4.1).

![Graph showing tandem ring spectrum and Lorentzian function fit on the sensing peak.](image)

Figure 4-9 A tandem ring spectrum and a Lorentzian function fit on the sensing peak.

4.3 Microfluidic Device and Liquid Sample Pumping System

Microfluidic channels were made as that the solutions would steadily flow on the resonators without leakings. The channels were made of polydimethylsiloxane (PDMS) (SYLGARD® 184 Silicone Elastomer, Dow Corning Inc., Midland, MI, USA) by mold casting method. A SOI chip, a microfluidics channel, and two tube connectors were sandwiched between two plastic shells which were fastened by four screws, as shown in Figure 4-10. Aqueous samples were sucked into the channel from a solution reservoir using negative pressure generated by a syringe pump. Pressure driven flow method was also attempted but was not used due to excessive leakage.
Figure 4-10 The microfluidic device with the chip and the optical alignment. (Left) The side view shows the SOI chip was between the PDMS fluidic layer (channel) and bottom plastic shell. (Right) The front view shows the microfluidics, fibres, and tubing.

4.4 Ring Resonators Calibration

The relationship between resonance peak shift and cladding reflective index change for a ring resonator was determined by calibration with solutions having known refractive indices. In this research, 6 sucrose-water solutions with concentrations from 0.5% to 3.0% w/w were used. Figure 4-11 shows one calibration example. In this case, the scan wavelength range was 1544 – 1556 nm and the scan time was 30 seconds. The flow of the solutions follows a pattern, i.e. 5 minutes water flow followed by 5 minutes of sucrose solution. The peak wavelengths were obtained from the fits were temperature-corrected and graphed in Figure 4-11(c). They fell in a straight line as expected and gave the sensitivity as $d\lambda_{\text{sens,corr}}/dn = 100.8(9) \text{ nm/RIU}$ nm/RIU. The minimal detectable index change in this experiment was $\delta n = 0.0003 \text{ RIU}$ (the average vertical width of the region between the dotted blue lines), which was calculated from a spreadsheet obtained from Loock and Wentzell [51].
Figure 4-11 Tandem ring resonator calibration. (a) Transmission spectrum between 1544 – 1546 nm shows one pair of sensing peak and reference peak at different concentration (w/w = 0%, 0.5%, 1.0%, 1.5%, 2.0%, 2.5%, 3.0%). The sensing peaks (peaks on the left) shifted when exposed to different concentration of sucrose solution and when the temperature changes. The reference peak (peaks on the right) only change positions when the temperature changes. (b) The wavelength shift of the sensing peak after temperature correction. (c) A linear fit to the sucrose calibration for the tandem ring resonators. The red line shows the linear fit of the refractive index change and resonance peak shift correlation. The two blue lines show +/- 95% confidence intervals of the fit. Sensitivity = 100.8(9) nm/RIU. Resolution limit = 0.00017 RIU, which is the width of the confident interval (the horizontal distance of the two blue line).

4.5 Mesoporous Silica Coating

The mesoporous silica coating was synthesized according to the process used by Du et al. [15]. 1.98 g (9.5 mmol) of tetraethoxysilane (TEOS) and 0.256 g (0.475 mmol) of bis-[3-(triethoxysilyl)-propyl]-tetrasulfide (SIS) were dissolved in 3 ml of anhydrous ethanol. 1.2 ml of DI water and 0.16 ml of 6 M HCl
were added to the solution, and it was stirred at 60°C for 2 hours. 0.719 g of Pluronic F127 was dissolved in 16 ml of anhydrous ethanol in another vial and was stirred at room temperature for 2 hours. The second solution was added to the first one drop at a time, and the resultant mixture was stirred for another 2 hours. The silica-covered SOI chips were cleaned first, by rinsing with isopropanol followed by exposure to an air plasma. The precursor solution was then spin-coated on the chips at 3000 rpm for 30 seconds. The thicknesses of the resulting films were around 400 nm. To avoid cracking of the films and to maintain constant conditions, the spin-coated films were kept at 42% relative humidity for 12 hours and dried in a vacuum oven at 65°C for 2 hours. The Pluronic F127 surfactant was removed by refluxing in acetone for 16 hours. The films were then dried in a vacuum oven for 2 hours.

4.6 Water Flow Baseline Drift

The mesoporous silica coated chips were kept in a plastic petri dish with lid in a dark and dry cupboard. When the chip was used to sense analytes in flowing aqueous solutions, the sensing peaks shifted continually towards lower wavelengths. The baseline drift was tested with flow rates of 0.9 ml/min and 0 ml/min (stationary water), twice for each flow rate. The test results are shown in Figure 4-12. When the flow rate was 0.9 ml/min, the peak shifting rates were \(-1.49(1) \times 10^{-8}\) RIU/second and \(-1.349(7)\times 10^{-8}\) RIU/second. When the flow rate was 0, the peak shifting rates were \(-3.96(5) \times 10^{-9}\) RIU/second and \(1.5(1) \times 10^{-9}\) RIU/second. This proved that in stationary water, the baseline drifted up or down by a very small amount, but was almost unchanged compared to the baseline with the flow rate at 0.9 ml/min. The baseline drift at 0.9 ml/min water flow was fairly constant, which might be due to the erosion of the coating in flowing solution, a process by which the debris were constantly washed away by the water flow. As all the adsorption and desorption tests were carried out at a flow rate of 0.9 ml/min, the baseline drift must be considered to determine the real refractive index change due to metal ion adsorption and desorption. The sloping baseline should be subtracted from the sensing signals to compensate for this slow drift.
Figure 4-12 Temperature-corrected sensing peak baselines at 0.9 ml/min and 0 ml/min flow rate of DI water.
Chapter 5

Sensing of Lead, Pb(II), and Mercury, Hg(II)

This chapter discusses Pb(II) and Hg(II) adsorption and desorption measurements on tetrasulfide mesoporous silica (S₄-PMS) functionalized SOI ring resonators with DI water, tap water, and seawater solutions, as well as tetraethyl orthosilicate mesoporous silica (PMS) functionalized SOI ring resonators test with DI water solutions. Sections 5.1 - 5.3 discuss the Pb(II) ion tests with DI water, tap water, and seawater. Section 5.4 discusses the Hg(II) ion tests with DI water. Section 5.5 discusses X-ray photoelectron spectroscopy (XPS) measurements on film with adsorbed Pb(II) and Hg(II) ions.

The adsorption processes were fitted to either equation (5.1), derived from equation (3.11)

\[
[MY](t) = \frac{k_a Y_0}{(k_a' + k_d)} \left[1 - \exp\left(-\left(k_a' + k_d\right)t\right)\right]
\]

\[
q(t) = q_e \left[1 - \exp\left(-\frac{t}{\tau}\right)\right]
\]

, where \([MY](t) = q(t), \ \frac{k_a Y_0}{(k_a' + k_d)} = q_e, \ \text{and} \ k_a' + k_d = \frac{1}{\tau}. \ \text{The second equation is the built-in fitting equation in Igor Pro}^{\text{TM}}.

For two binding-site adsorption, equation (5.2) can be derived from equation (3.18)

\[
([MX] + [MY])(t) = \frac{k_{a,X} X_0}{(k_{a,X}' + k_{d,X})} \left[1 - \exp\left(-\left(k_{a,X}' + k_{d,X}\right)t\right)\right]
+ \frac{k_{a,Y} Y_0}{(k_{a,Y}' + k_{d,Y})} \left[1 - \exp\left(-\left(k_{a,Y}' + k_{d,Y}\right)t\right)\right]
\]

\[
q(t) = q_{e,X} \left[1 - \exp\left(-\frac{t}{\tau_{a,X}}\right)\right] + q_{e,Y} \left[1 - \exp\left(-\frac{t}{\tau_{a,Y}}\right)\right]
\]
where \(([MX] + [MY])(t) = q(t), \quad \frac{k_{a,x} [X]_0}{(k_{a,x} + k_{d,x})} = q_{e,x}, \quad \frac{k_{a,y} [Y]_0}{(k_{a,y} + k_{d,y})} = q_{e,y}, \quad k_{a,x} + k_{d,x} = \frac{1}{\tau_{a,x}}, \) and \(k_{a,y} + k_{d,y} = \frac{1}{\tau_{a,y}}. \) The second equation is the built-in fitting equation in Igor Pro™.

The desorption processes were fitted to either equation (5.3), derived from equation (3.15)

\[
[MY](t) = [MY]_0 \left[\exp \left(-k_d t \right) \right]
\]

\[
q(t) = q_0 \left[\exp \left(-\frac{t}{\tau_d} \right) \right]
\]

(5.3)

where \([MY](t) = q(t), [MY]_0 = q_0,\) and \(k_d = \frac{1}{\tau_d}.\) The second equation is the built-in fitting equation in Igor Pro™.

For two binding-site desorption, equation (5.4), derived from equation (3.19)

\[
([MX] + [MY])(t) = [MX]_0 \exp \left(-k_{d,x} t \right) + [MY]_0 \exp \left(-k_{d,y} t \right)
\]

\[
q(t) = q_{0,x} \left[\exp \left(-\frac{t}{\tau_{d,x}} \right) \right] + q_{0,y} \left[\exp \left(-\frac{t}{\tau_{d,y}} \right) \right]
\]

(5.4)

where \(([MX] + [MY])(t) = q(t), [MX]_0 = q_{0,x}, [MY]_0 = q_{0,y}, k_{d,x} = \frac{1}{\tau_{d,x}}, \) and \(k_{d,y} = \frac{1}{\tau_{d,y}}.\) The second equation is the built-in fitting equation in Igor Pro™.

5.1 Pb(II) Ion Adsorption and Desorption Tests in DI Water

5.1.1 Adsorption and Desorption Tests on Sx-PMS Coating

The adsorption and desorption of Pb(II) in and out of an Sx-PMS coating were recorded by scanning the resonator transmission spectra at a scan interval of 30 s. As a result, the data acquisition rate was one data point per 30 seconds. The adsorption process was monitored for 3 hours, and the DI water desorption process was monitored for 6 hours. The experiment was completed by flushing the chip with 1 ppm (ppm...
defined as mg/L) aqueous Na$_2$EDTA solution for 1 hour to remove the remaining metal ions and restore the coating. As shown in Figure 5-1, the coating’s refractive index increased bi-exponentially during the adsorption process and decreased bi-exponentially in the water desorption process. The quality of the fit residuals increased dramatically when changing from a one-site binding model to a two-site binding model.

The fit parameters are shown in Table 5-1. The loading values with different units were calculated based on Table 3-1. It was apparent from the fit residuals that the double exponential functions fitted the adsorption and desorption process better. It was also clear from the fitting parameters that the fast adsorption process with $\tau_X = 300$ s led to a strongly bound lead ion that took a long time ($\tau_Y = 18000$ s) to remove. Some of this tightly bound lead could only be removed using EDTA as a chelating agent. The loosely bound lead took a longer time to bind to the film ($\tau_Y = 4650$ s) but was readily removed ($\tau_Y = 2150$ s). This suggests that the two binding sites in the coating have different affinities for Pb(II). Note that the $q_{0,Y}$ term in Na$_2$EDTA desorption was nearly zero with very large relative error, suggesting a single exponential decay process. That was probably because the loosely bound Pb(II) was mostly removed and EDTA removed Pb$^{2+}$ ions only from the tightly bound site after 6 hours of DI water desorption.

![Figure 5-1](image.png)

Figure 5-1 Comparison between single and double exponential functions fits of 1 ppm Pb(II) ion DI water solution adsorption and desorption on the Sr-PMS coating. (Left) Single exponential functions fit with fit residual plotted on the bottom. The fit was poor. (Right) Double exponential functions fit with fit residual plotted on the bottom. This fit was much better than the single exponential functions fit.
Table 5-1 Fitting parameters for single exponential functions (5.1) and (5.3), and double exponential equations (5.2) and (5.4) to describe the Pb(II) ion adsorption and desorption on the S₄-PMS coating of Figure 5-1. The decay time \(\tau \) is given in seconds, and the loadings are given in values in three different units, calculated based on Table 3-1.

<table>
<thead>
<tr>
<th>Single site model</th>
<th>Parameter</th>
<th>Unit</th>
<th>Adsorption</th>
<th>Desorption</th>
<th>Na₂EDTA rinse</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(q_e) or (q_0)</td>
<td>RIU</td>
<td>0.00152 (2)</td>
<td>0.00123(4)</td>
<td>0.00033(1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mol(Pb)/mol(film)</td>
<td>0.00195(2)</td>
<td>0.00159(5)</td>
<td>0.00042(1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>g(Pb)/g(wet film)</td>
<td>0.0103(2)</td>
<td>0.00837(3)</td>
<td>0.00220(1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>g(Pb)/g(dry film)</td>
<td>0.0135(1)</td>
<td>0.0110(4)</td>
<td>0.00288(1)</td>
</tr>
<tr>
<td></td>
<td>(\tau)</td>
<td>s</td>
<td>375(7)</td>
<td>6130(60)</td>
<td>197(9)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Double site model</th>
<th>Parameter</th>
<th>Unit</th>
<th>Adsorption</th>
<th>Desorption</th>
<th>Na₂EDTA rinse</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(q_{e,X}) or (q_{0,X})</td>
<td>RIU</td>
<td>0.00143(7)</td>
<td>0.000979(6)</td>
<td>0.00031(1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mol(Pb)/mol(film)</td>
<td>0.00182(9)</td>
<td>0.00126(8)</td>
<td>0.00040(1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>g(Pb)/g(wet film)</td>
<td>0.00969(5)</td>
<td>0.00662(4)</td>
<td>0.00212(7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>g(Pb)/g(dry film)</td>
<td>0.0127(7)</td>
<td>0.00866(5)</td>
<td>0.00277(9)</td>
</tr>
<tr>
<td></td>
<td>(\tau_X) or (\tau_X)</td>
<td>s</td>
<td>301(3)</td>
<td>18000(600)</td>
<td>170(10)</td>
</tr>
<tr>
<td></td>
<td>(q_{e,Y}) or (q_{0,Y})</td>
<td>RIU</td>
<td>0.00019(3)</td>
<td>0.00059(2)</td>
<td>0.00003(5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mol(Pb)/mol(film)</td>
<td>0.000243(4)</td>
<td>0.000752(2)</td>
<td>0.00004(6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>g(Pb)/g(wet film)</td>
<td>0.00128(2)</td>
<td>0.00396(1)</td>
<td>0.0002(3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(g(Pb)/g(dry film)</td>
<td>0.00168(3)</td>
<td>0.00519(1)</td>
<td>0.0003(4)</td>
</tr>
<tr>
<td></td>
<td>(\tau_Y) or (\tau_Y)</td>
<td>(s)</td>
<td>4650(40)</td>
<td>2150(70)</td>
<td>2610(40)</td>
</tr>
</tbody>
</table>

5.1.2 Adsorption and Desorption Tests on PMS Coating

The adsorption and desorption of Pb(II) of a PMS coating were recorded with the same data acquisition rate as in the S₄-PMS tests (30 seconds per data point). The adsorption was monitored for 3
hours, the DI water desorption process was also monitored for 3 hours, and the desorption process using 1 ppm Na$_2$EDTA solution was recorded for 2 hours.

The fit curves are shown in Figure 5-2 and the fit parameters are summarized in Table 5-2. The loading values with different units were calculated based on Table 3-1. It was clear from the fit residuals that the data can be fitted to single exponential functions with good agreement. This suggested that only one binding site was in the PMS coating.

Figure 5-2 Single exponential function fit to the 1 ppm Pb(II) adsorption and desorption processes of the PMS coating with fit residual plotted on the bottom.

Table 5-2 Fitting parameters for single exponential functions (5.1) and (5.3) to describe the Pb(II) ion adsorption and desorption on the PMS coating of the figure above. The decay times τ were given in seconds, and the loadings q_e and q_0 were given in values in three different units, calculated based on Table 3-1.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Units</th>
<th>Adsorption</th>
<th>Desorption</th>
<th>Na$_2$EDTA rinse</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_e or q_0</td>
<td>RIU</td>
<td>0.000548(3)</td>
<td>0.000537(2)</td>
<td>0.000053(3)</td>
</tr>
<tr>
<td></td>
<td>mol(Pb)/mol(film)</td>
<td>0.000702(4)</td>
<td>0.000689(2)</td>
<td>0.000068(4)</td>
</tr>
<tr>
<td></td>
<td>g(Pb)/g(wet film)</td>
<td>0.00370(3)</td>
<td>0.00363(1)</td>
<td>0.00036(2)</td>
</tr>
<tr>
<td></td>
<td>g(Pb)/g(dry film)</td>
<td>0.00485(2)</td>
<td>0.00475(2)</td>
<td>0.00047(3)</td>
</tr>
<tr>
<td>τ</td>
<td>s</td>
<td>687(6)</td>
<td>5060(50)</td>
<td>86(9)</td>
</tr>
</tbody>
</table>

While the adsorption rate was slower compared to the fast uptake rate observed with the S$_4$-PMS coating, it was also much faster than the rate observed with the S$_4$-PMS film. Similarly, the desorption rate
fell between the fast and slow desorption rates observed for the S₄-PMS film. Therefore, it appeared as if the Pb(II) ions have an affinity for the PMS film that fell between the two distinct binding sites of the S₄-PMS film.

5.1.3 Test on Uncoated Chip

Before the chip was coated with S₄-PMS and PMS coatings, it was exposed to lead ions in aqueous solution by flowing DI water and 1 ppm Pb(II) solutions across the microphotonic devices. No observable refractive index change could be found in the data. The test results are shown in Figure 5-3. This suggested that 1 ppm Pb(II) solutions by themselves did not shift the resonance peaks. At 1550 nm and 20.0 °C, the refractive index difference between water and 1 ppm Pb(NO₃)₂ was 2×10⁻⁶ RIU, which was below the detection limit of our ring resonators. This confirms that the adsorption of metal ions into the mesoporous silica coating was the reason for peak shifts.

![Figure 5-3](image_url)
Uncoated chip shows no refractive index change between water and Pb(II) solution.
5.1.4 Adsorption and Desorption at Different Pb(II) Ion Concentrations

Figure 5-4 Adsorption-desorption curve when the resonators were exposed to a series of Pb(II) solutions with concentrations of 1000 ppb, 500 ppb, 300 ppb, 200 ppb, 100 ppb, 50 ppb, 20 ppb, and 10 ppb.

The adsorption-desorption curve for a series of Pb(II) ion solution samples (1000 ppb, 500 ppb, 300 ppb, 200 ppb, 100 ppb, 50 ppb, 20 ppb, and 10 ppb, ppb is defined as ng/mL) are shown in Figure 5-4. Each of these adsorption tests lasted 3 hours. The water desorption tests lasted 3 hours, and the Na₂EDTA solution desorption tests lasted 2-3 hours. Note that the 1 ppm Pb(II) solution data shown in Figure 5-4 and Table 5-3 are slightly different from those shown in Figure 5-1 and Table 5-1 although they were from the tests on the same film on the same chip. Those two tests were performed apart by five months. The resonator’s response was slightly different as a result of many possible factors, including film aging and erosion from aqueous sample flows, and different PDMS channel positions.

Although the adsorption-desorption curves for high concentration Pb(II) solutions (1 ppm – 200 ppb) could be fitted well with double exponential equations, the curves for low concentration (100 ppb – 10 ppb) fitted better with single exponential equations. The most plausible explanation was that the strong
binding site would bind the Pb ions first before the weak binding sites started to be occupied. These curves and their fits are shown in Figure 5-5 to Figure 5-12, and the fit parameters are summarized in Table 5-3 to Table 5-10.

Figure 5-5 Double exponential function fits of 1 ppm Pb(II) ion adsorption and desorption processes on the S$_4$-PMS coating, with fit residual shown below.

Table 5-3 Fitting parameters for double exponential function (5.2) and (5.4) fits of the 1 ppm Pb(II) ion adsorption and desorption on the S$_4$-PMS coating of the figure above.

<table>
<thead>
<tr>
<th></th>
<th>Adsorption</th>
<th>Desorption</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q_{e,X}$ or $q_{0,X}$ (RIU)</td>
<td>0.00139(1)</td>
<td>0.0005(1)</td>
</tr>
<tr>
<td>τ_X or τ_X (s)</td>
<td>238(5)</td>
<td>5300(100)</td>
</tr>
<tr>
<td>$q_{e,Y}$ or $q_{0,Y}$ (RIU)</td>
<td>0.00019(1)</td>
<td>0.00092(5)</td>
</tr>
<tr>
<td>τ_Y or τ_Y (s)</td>
<td>2260(20)</td>
<td>1300(100)</td>
</tr>
</tbody>
</table>
Figure 5-6 Double exponential function fits of 500 ppb Pb(II) ion adsorption and desorption processes on the S₄-PMS coating, with fit residual shown below.

Table 5-4 Fitting parameters for double exponential function (5.2) and (5.4) fits of the 500 ppb Pb(II) ion adsorption and desorption on the S₄-PMS coating of the figure above.

<table>
<thead>
<tr>
<th></th>
<th>Adsorption</th>
<th>Desorption</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q_{e,x}$ or $q_{0,x}$(RIU)</td>
<td>0.00133(2)</td>
<td>0.00097 (2)</td>
</tr>
<tr>
<td>τ_x or τ_x (s)</td>
<td>515 (8)</td>
<td>5710(40)</td>
</tr>
<tr>
<td>$q_{e,y}$ or $q_{0,y}$(RIU)</td>
<td>0.00009(1)</td>
<td>0.000584(9)</td>
</tr>
<tr>
<td>τ_y or τ_y (s)</td>
<td>1920(40)</td>
<td>900(300)</td>
</tr>
</tbody>
</table>
Figure 5.7 Double exponential function fits of 300 ppb Pb(II) ion adsorption and desorption processes on the S₄-PMS coating, with fit residual shown below.

Table 5.5 Fitting parameters for double exponential function (5.2) and (5.4) fits of the 300 ppb Pb(II) ion adsorption and desorption on the S₄-PMS coating of the figure above.

<table>
<thead>
<tr>
<th></th>
<th>Adsorption</th>
<th>Desorption</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_{eX}) or (q_{0X}) (RIU)</td>
<td>0.00119(1)</td>
<td>0.000922(9)</td>
</tr>
<tr>
<td>(\tau_X) or (\tau_{X}) (s)</td>
<td>870(10)</td>
<td>5700(300)</td>
</tr>
<tr>
<td>(q_{eY}) or (q_{0Y}) (RIU)</td>
<td>0.00014(2)</td>
<td>0.00034(2)</td>
</tr>
<tr>
<td>(\tau_Y) or (\tau_{Y}) (s)</td>
<td>9600(200)</td>
<td>820(60)</td>
</tr>
</tbody>
</table>
Figure 5-8 Double exponential function fits of 200 ppb Pb(II) ion adsorption and desorption processes on the S₄-PMS coating, with fit residual shown below.

Table 5-6 Fitting parameters for double exponential function (5.2) and (5.4) fits of the 200 ppb Pb(II) ion adsorption and desorption on the S₄-PMS coating of the figure above.

<table>
<thead>
<tr>
<th></th>
<th>Adsorption</th>
<th>Desorption</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_{e,x}) or (q_{0,x}) (RIU)</td>
<td>0.0009(1)</td>
<td>0.000888(5)</td>
</tr>
<tr>
<td>(\tau_x) or (\tau_x) (s)</td>
<td>1180(70)</td>
<td>5600(200)</td>
</tr>
<tr>
<td>(q_{e,y}) or (q_{0,y}) (RIU)</td>
<td>0.00017(8)</td>
<td>0.00024(1)</td>
</tr>
<tr>
<td>(\tau_y) or (\tau_y) (s)</td>
<td>3000(500)</td>
<td>400 (40)</td>
</tr>
</tbody>
</table>
Figure 5.9 Single exponential function fits of 100 ppb Pb(II) ion adsorption and desorption processes on the S₄-PMS coating, with fit residual shown below.

Table 5.7 Fitting parameters for single exponential function (5.1) and (5.3) fits of the 100 ppb Pb(II) ion adsorption and desorption on the S₄-PMS coating of the figure above.

<table>
<thead>
<tr>
<th></th>
<th>Adsorption</th>
<th>Desorption</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_{e,X})</td>
<td>0.00107(2)</td>
<td>0.001016(3)</td>
</tr>
<tr>
<td>(q_{0,X})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\tau_{X})</td>
<td>2660(20)</td>
<td>4440(40)</td>
</tr>
</tbody>
</table>
Figure 5-10 Single exponential function fits of 50 ppb Pb(II) ion adsorption and desorption processes on the S_4-PMS coating, with fit residual shown below.

Table 5-8 Fitting parameters for single exponential function (5.1) and (5.3) fits of the 50 ppb Pb(II) ion adsorption and desorption on the S_4-PMS coating of the figure above.

<table>
<thead>
<tr>
<th></th>
<th>Adsorption</th>
<th>Desorption</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_e,X or q_0,X (RIU)</td>
<td>0.000911(4)</td>
<td>0.000633(3)</td>
</tr>
<tr>
<td>τ_X or τ_x (s)</td>
<td>5340(60)</td>
<td>5340(80)</td>
</tr>
</tbody>
</table>
Figure 5-11 Single exponential function fits of 20 ppb Pb(II) ion adsorption and desorption processes on the S₄-PMS coating, with fit residual shown below.

Table 5-9 Fitting parameters for single exponential function (5.1) and (5.3) fits of the 20 ppb Pb(II) ion adsorption and desorption on the S₄-PMS coating of the figure above.

<table>
<thead>
<tr>
<th></th>
<th>Adsorption</th>
<th>Desorption</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q_{e,X}$ or $q_{0,X}$ (RIU)</td>
<td>0.00016(1)</td>
<td>0.000240(2)</td>
</tr>
<tr>
<td>τ_X or τ_{X} (s)</td>
<td>32000(3000)</td>
<td>4900(100)</td>
</tr>
</tbody>
</table>
Figure 5-12 Single exponential function fits of 10 ppb Pb(II) ion adsorption and desorption processes on the S₄-PMS coating, with fit residual shown below.

Table 5-10 Fitting parameters for single exponential function (5.1) and (5.3) fits of the 10 ppb Pb(II) ion adsorption and desorption on the S₄-PMS coating of the figure above.

<table>
<thead>
<tr>
<th></th>
<th>Adsorption</th>
<th>Desorption</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q_{e,x}$ or $q_{0,x}$ (RIU)</td>
<td>0.0011(2)</td>
<td>0.000126(3)</td>
</tr>
<tr>
<td>τ_x or τ_x (s)</td>
<td>46000(9000)</td>
<td>6400(300)</td>
</tr>
</tbody>
</table>

5.1.5 The Linear Relationship Between the Initial Adsorption Rates and the Pb(II) concentration

The initial adsorption rates could be calculated by using equation (5.5).
The results are shown in Table 5-11 and plotted in Figure 5-13. As shown in Table 5-11, the double exponential fit errors were large for low concentrations (100 ppb, 50 ppb, 20 ppb, and 10 ppb). For these low concentration tests, a single exponential fit gave a smaller error. The most plausible explanation was that the strong binding site would bind the Pb(II) ions first before the weak binding sites started to be occupied. When the concentration was high (1000ppb – 200ppb), the strong binding sites quickly get saturated so that the weak binding sites started to adsorb Pb(II). When the concentration was low(< 100ppb), however, the strong binding site had not reached saturation in the 3-hour adsorption test, and the weak binding site did not adsorb Pb(II) ions at detectable concentrations. Hence the single adsorption curves were observed.

A linear relationship could be observed for initial adsorption rate into the tightly bound site, with a slope of $k_{a,Y} X_0 = 5.05(5) \times 10^{-9}$ RIU/s. The detection limit was 30 ppb, assuming error free calibration.

The detection limit was calculated using the spreadsheet of reference [51].

Table 5-11 Initial Adsorption rate of Pb(II) solutions at different concentrations

<table>
<thead>
<tr>
<th>Pb(II) Conc. (ppb)</th>
<th>q_e or q_eX</th>
<th>τ_a or $\tau_{a,X}$ (s)</th>
<th>q_eY</th>
<th>$\tau_{a,Y}$ (s)</th>
<th>Initial Rate (RIU/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double exponential fit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>0.00140(1)</td>
<td>283(5)</td>
<td>0.00019(1)</td>
<td>2000(200)</td>
<td>5.01(3)×10^{-6}</td>
</tr>
<tr>
<td>500</td>
<td>0.00133(2)</td>
<td>515(8)</td>
<td>0.00009(4)</td>
<td>4915(400)</td>
<td>2.06(9)×10^{-6}</td>
</tr>
<tr>
<td>300</td>
<td>0.00120(1)</td>
<td>869(13)</td>
<td>0.00014(2)</td>
<td>10000(5000)</td>
<td>1.39(4)×10^{-6}</td>
</tr>
<tr>
<td>200</td>
<td>0.0009(1)</td>
<td>1182(74)</td>
<td>0.0002(1)</td>
<td>3000(1000)</td>
<td>8 (1)×10^{-7}</td>
</tr>
<tr>
<td>Single exponential function fit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.00107 (2)</td>
<td>2660(20)</td>
<td></td>
<td></td>
<td>4.03(3)×10^{-7}</td>
</tr>
<tr>
<td>50</td>
<td>0.00091(3)</td>
<td>5340(60)</td>
<td></td>
<td></td>
<td>1.70(3)×10^{-8}</td>
</tr>
<tr>
<td>20</td>
<td>0.0016(1)</td>
<td>32000(3000)</td>
<td></td>
<td></td>
<td>5.0(8)×10^{-8}</td>
</tr>
<tr>
<td>10</td>
<td>0.0011(2)</td>
<td>50000(10000)</td>
<td></td>
<td></td>
<td>2(1)×10^{-8}</td>
</tr>
</tbody>
</table>
Figure 5-13 Initial refractive index change rate at different concentrations of Pb(II) ion. The black dots represent calculated initial rates. The red line represents a linear fit. The two blue lines represent the 99% confidence intervals calculated as ±3σ. [51].

5.1.6 Determination of Rate Constants, Equilibrium Constants and Adsorption Capacities for Pb(II) ion adsorption

This section used the models and all experimental results to determine the films characteristic parameters as described in chapter 3. As explained in the previous section, the double exponential fit worked for high concentration, and the single exponential fit worked for low concentrations. This suggested that at low concentration (100 ppb, 50 ppb, 20 ppb, 10 ppb), only the strong binding sites X bound Pb(II) ions. Also, data from the two lowest concentrations (20 ppb and 10 ppb) was not used due to large fit errors. As a result, only data for strong binding sites with Pb(II) concentration at 1 ppm to 50 ppb was used in the following calculation.

Calculate $k_{d,X}$ From Desorption Curves

Based on equation (5.6)

$$([MX] + [MY])(t) = [MX]_0 \exp(-k_{d,X}t) + [MY]_0 \exp(-k_{d,Y}t)$$ \hspace{1cm} (5.6)
$k_{d,X} = 1/\tau_{d,X}$. The rate constants $k_{d,X}$ for each desorption curve are shown in Table 5-12. The average value was $1.84(3) \times 10^{-4}$ s$^{-1}$.

Table 5-12 Pb(II) Desorption data sets for $k_{d,X}$ calculation

<table>
<thead>
<tr>
<th>Pb(II) Conc. (ppb)</th>
<th>$\tau_{d,X}$ (s)</th>
<th>$k_{d,X}$ (s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>5300(100)</td>
<td>1.90(4) $\times 10^{-4}$</td>
</tr>
<tr>
<td>500</td>
<td>5700(40)</td>
<td>1.75(1) $\times 10^{-3}$</td>
</tr>
<tr>
<td>300</td>
<td>5700(300)</td>
<td>1.76(8) $\times 10^{-3}$</td>
</tr>
<tr>
<td>200</td>
<td>5600(200)</td>
<td>1.77(5) $\times 10^{-4}$</td>
</tr>
<tr>
<td>100</td>
<td>5540(70)</td>
<td>1.81(2) $\times 10^{-4}$</td>
</tr>
<tr>
<td>50</td>
<td>5340(80)</td>
<td>1.87(3) $\times 10^{-4}$</td>
</tr>
<tr>
<td>20</td>
<td>4900(100)</td>
<td>2.05(5) $\times 10^{-4}$</td>
</tr>
<tr>
<td>10</td>
<td>6400(300)</td>
<td>1.55(8)$\times 10^{-4}$</td>
</tr>
</tbody>
</table>

Calculate $k_{a,X}$, $k_{d,X}$, and $K_{a,X}$ from Adsorption Curves

The adsorption time constants were obtained by fitting the data to equation (5.7),

$$
([MX] + [MY])(t) = \frac{k_{a,X} [X]_0}{(k_{a,X} + k_{d,X})[1 - \exp(-(k_{a,X} + k_{d,X})t)]}
+ \frac{k_{a,Y} [Y]_0}{(k_{a,Y} + k_{d,Y})[1 - \exp(-(k_{a,Y} + k_{d,Y})t)]}
$$

(5.8)

Recognizing that $\tau_{a,X} = 1/(k_{a,X} + k_{d,X})$ and $k_{a,X} = k_{a,X}[M]$, both $k_{a,X}$ and $k_{d,X}$ can be obtained from the linear fit

$$
\frac{1}{\tau_{a,X}} = k_{a,X} [M] + k_{d,X}
$$

(5.9)

Fitting $1/\tau_{a,X}$ as a function of $[M]$ with a linear function yielded $k_{a,X} = 5.2(1) \times 10^1$ (RIU\cdots$^{-1}$), $k_{d,X} = 8(4) \times 10^5$ s$^{-1}$, and an equilibrium constant $K_{a,X} = k_{a,X}/k_{d,X} = 8 \times 10^5$ RIU$^{-1}$. The fit line is shown in Figure 5-14, and the parameters are listed in Table 5-13.

However, this $k_{d,X}$ had a large error. By using $k_{d,X}$ calculated from desorption curves in the previous step, a more precise $K_{a,X}$ could be obtained. In this fit, $k_{a,X} = 5.0(1) \times 10^1$ (RIU\cdots$^{-1}$), $k_{d,X} = 1.84(3) \times 10^4$ s$^{-1}$, $K_{a,X} = 2.8(1) \times 10^5$ RIU$^{-1}$.

63
Table 5-13 Pb(II) data sets for $k_{a,X}$, $k_{d,X}$, $K_{a,X}$, and $[X]_0$ calculation

<table>
<thead>
<tr>
<th>Pb(II) Conc. (ppb)</th>
<th>Pb(II) Conc. (RIU)</th>
<th>$[MX]_{eq,a}$ (RIU)</th>
<th>$\tau_{a,X}$ (s)</th>
<th>$[MY]_{eq,a}$ (RIU)</th>
<th>$\tau_{a,Y}$ (s)</th>
<th>$1/\tau_{a,X} = k_{a,X} \cdot [M] + k_{d,X}$</th>
<th>$[M]/[MX]_{eq,a}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>6.776×10⁻⁵</td>
<td>0.00140(1)</td>
<td>283(5)</td>
<td>0.00019(1)</td>
<td>2000(200)</td>
<td>3.52(6)×10⁻³</td>
<td>0.0485(5)</td>
</tr>
<tr>
<td>500</td>
<td>3.388×10⁻⁵</td>
<td>0.00133(2)</td>
<td>515(8)</td>
<td>0.00009(4)</td>
<td>4900(400)</td>
<td>1.94(3)×10⁻³</td>
<td>0.0255(5)</td>
</tr>
<tr>
<td>300</td>
<td>2.033×10⁻⁵</td>
<td>0.00120(1)</td>
<td>869(13)</td>
<td>0.00014(2)</td>
<td>10000(5000)</td>
<td>1.15(2)×10⁻³</td>
<td>0.0169(2)</td>
</tr>
<tr>
<td>200</td>
<td>1.355×10⁻⁵</td>
<td>0.0009(1)</td>
<td>1187(74)</td>
<td>0.00002(1)</td>
<td>3000(1000)</td>
<td>8.5(5)×10⁻⁴</td>
<td>0.014(2)</td>
</tr>
<tr>
<td>100</td>
<td>6.78×10⁻⁶</td>
<td>0.001073(2)</td>
<td>2660(20)</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>3.76(2)×10⁻⁴</td>
</tr>
<tr>
<td>50</td>
<td>3.39×10⁻⁶</td>
<td>0.000911(4)</td>
<td>5350(60)</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>1.87(2)×10⁻⁴</td>
</tr>
</tbody>
</table>

Figure 5-14 Diagram showing $1/\tau_{a,X}$ has a linear relationship with Pb(II) concentration. By fitting $1/\tau_{a,X}$ vs. Pb(II) concentration, $k_{a,X}$, $k_{d,X}$, and $K_{a,X}$ for Pb(II) ion adsorption on the S_4-PMS coating could be calculated from a linear fit.

Calculate $K_{a,X}$ and $[X]_0$ from Adsorption Curves

The second Method to calculate equilibrium constant K was using equation (3.13)

$$\frac{1}{[MX]_{eq,a}} = \frac{1}{[X]_0} + \frac{k_{d,X}}{k_{a,X}} \frac{1}{[M]}$$

(3.13)

which could be rearranged to give

$$\frac{[M]}{[MX]_{eq,a}} = \frac{[M]}{[X]_0} + \frac{1}{K_{a,X} [X]_0}$$

(5.10)

By fitting $[M]/[MX]_{eq,a}$ vs. $[M]$ with a linear function (data listed in Table 5-13), $K_{a,X}$ and $[X]_0$ could be calculated from the intercept and the slope. The fit curve is shown in Figure 5-15. The equilibrium constant
was calculated to be 2.5 (9)×10^5 RIU^{-1}, close to the value (2.8 (1)×10^5 RIU^{-1}) calculated using the previous method. From this equilibrium constant, \(\Delta G_m'(\text{Pb(II)X}) \) was calculated to be \(\Delta G_m'(\text{Pb(II)X}) = RT\ln K_{a,X} = 42(2)\text{kJ/mol} \). The concentration of total binding sites was \([X]_0 = 0.00147(6)\text{ RIU}\). Mole fraction of binding site X = 0.00147(6) RIU/(0.780 RIU/mole fraction) = 0.00188(8) mol X binding site/mol film.

Figure 5-15 \([\text{Pb(II)}]/[\text{Pb(II)X}]_{eq,a}\) showing a linear relationship with Pb(II) concentration. By fitting \([\text{Pb(II)}]/[\text{Pb(II)X}]_{eq,a}\) vs. \([M]\) with a linear function, \(K_{a,X} \) and \([X]_0 \) for Pb(II) ion adsorption on the S4-PMS coating could be calculated.

Notice that Figure 5-15 and Figure 5-14 have similar shapes. That is because Equation (5.11) and equation (5.12) are equivalent. From equation (3.11), equation (5.13) can be derived.

\[
[MX]_{eq} = ([MX]) (t)_{eq} \to \infty \frac{k_{a,X} [X]_0}{k_{a,X} + k_{d,X}} = k_{a,X} [M] [X]_0 \tau_{a,X} \quad (5.13)
\]

Equation (5.14) can be derived by substituting equation (5.13) into (5.15). Both equations are useful, as they give different reaction constants.

5.2 Pb(II) Ion Adsorption and Desorption in Tap Water

\(\text{Pb(NO}_3\text{)}_2 \) was spiked into tap water (Kingston, 2016) to make a 1 ppm Pb(II) solution. The solution was pumped flowing across the S4-TEOS-coated chip, and the adsorption curves and tap water desorption curves were recorded.
5.2.1 Adsorption Curve of Tap Water of the S₄-PMS Coating

The tap water used in this research was obtained from the Chernoff Hall, room 334 tap water faucet. According to Kingston water treatment plant report, tap water in Kingston contained high concentrations of Ca(II), Na(I), and other ions (Table 5-14) [52]. These ions bound to the binding sites in the coating, and increased the coating’s refractive index by about 0.005 RIU, as shown in Figure 5-16, which was about 2-3 times higher than the largest shifts in the 1 ppm Pb(II) adsorption tests. The adsorption took at least 5 hours to reach equilibrium. The coating was immersed in tap water overnight before conducting Pb(II) tests.

Table 5-14 Ion concentrations in Kingston tap water.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Results Range</th>
<th>Unit of measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>8.04 – 8.22</td>
<td></td>
</tr>
<tr>
<td>Al</td>
<td>0.01-0.03</td>
<td>mg/L</td>
</tr>
<tr>
<td>Ca</td>
<td>33.5 – 38.2</td>
<td>mg/L</td>
</tr>
<tr>
<td>Fe</td>
<td><0.005</td>
<td>mg/L</td>
</tr>
<tr>
<td>Na</td>
<td>16.6-17.2</td>
<td>mg/L</td>
</tr>
<tr>
<td>Pb</td>
<td>0.00002-0.00003</td>
<td>mg/L</td>
</tr>
<tr>
<td>Hg</td>
<td><0.00002</td>
<td>mg/L</td>
</tr>
</tbody>
</table>

The tap water appeared to erode the S₄-PMS coating faster than DI water. The baseline drifted by -6.62(1)×10⁻⁸ RIU/s, compared to -1.359(7)×10⁻⁸ RIU/s for DI water (Figure 5-17).

![Figure 5-16 Tap water adsorption curve of S₄-PMS coating.](image-url)
5.2.2 Pb(II) Ion Adsorption and Desorption on the S4-PMS Coating in Tap Water

The coating was immersed in tap water overnight, and conditioned for 1 hour in tap water flow (flow rate = 0.9 ml/min) before changing to 1 ppm Pb(II) tap water solution. The Pb(II) adsorption test was done for 3 hours before the 3-hour tap water desorption test. In these experiments, Na₂EDTA desorption was not attempted, as Na₂EDTA would remove not only adsorbed Pb(II) ion but all other metal ions as well.

The adsorption-desorption curve could be fitted satisfactorily with single exponential functions, but the bi-exponential reduced the residual substantially. The fit curves are shown in Figure 5-18, and the fit parameters are shown in Table 5-15. The initial adsorption rate was calculated as 6.50×10⁻⁷ RIU/second, which was much smaller than the initial adsorption rate in DI water (4.78×10⁻⁴ RIU/second) for the same concentration of 1 ppm Pb(II). Consequently, adsorption took a much longer time to reach equilibrium. It was likely that the coating already contained other ions (Ca²⁺, Mg²⁺, etc.) in its binding sites after exposure to tap water. The adsorption process and desorption processes were then, in effect, ion exchange processes.

Figure 5-17 Tap water baseline of S4-PMS coating.
Figure 5-18 Comparison between single and double exponential functions fits of 1ppm Pb(II) ion tap water solution adsorption and desorption on the S₄-PMS coating. (Left) The fit to a single exponential function with the fit residual plotted on the bottom. (Right) The fit to a double exponential function with the fit residual plotted on the bottom.

Table 5-15 Fitting parameters for single and double exponential function fits of Pb(II) tap water solution adsorption and desorption of S₄-PMS coating.

<table>
<thead>
<tr>
<th></th>
<th>Single site model</th>
<th>Two site model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adsorption</td>
<td>Desorption</td>
</tr>
<tr>
<td>qₑ or q₀(RIU)</td>
<td>0.00350(2)</td>
<td>0.00192(1)</td>
</tr>
<tr>
<td>τ (s)</td>
<td>7460(10)</td>
<td>2590(30)</td>
</tr>
<tr>
<td>qₑ,ₓ or q₀,ₓ(RIU)</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>qₑ,ᵧ or q₀,ᵧ(RIU)</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>τₓ or τₓ (s)</td>
<td>15900(200)</td>
<td>1360(70)</td>
</tr>
<tr>
<td>τᵧ or τᵧ (s)</td>
<td>15900(200)</td>
<td>1360(70)</td>
</tr>
</tbody>
</table>

The data were not simple to interpret, but drawing on the above hypothesis of the two site model, the fast adsorption process was followed by a slow desorption process, with time constants τₓ = 1460 s and 11200 s, which were comparable to those listed in Table 5-1, i.e. τₓ = 300 s and 18000 s, albeit with a much slower adsorption process. Maybe not surprisingly, the slower of the two processes with an adsorption time constant of τₓ = 16000 s and desorption constant of 1400 s, also showed a slower uptake compared to the adsorption in DI water (τₓ = 4650 s) and a faster release (τₓ = 2610 s with DI water). All this was consistent
with a replacement of loosely bound ions found in tap water by Pb(II), a process that was efficient when these ions were bound to tetrasulfide groups, but very slow when they were bound non-specifically.

5.3 Pb(II) Ion Adsorption in Seawater on S₄-PMS coating

A seawater sample (Sigma-Aldrich, St. Louis, MO) was applied to the S₄-PMS coated ring resonator and the response was recorded. Like tap water, the seawater eroded the coating faster than tap water did. When DI water was replaced with seawater, the coating’s refractive index jumped by 0.004, and then decreased quickly. As shown in Figure 5-19 and Figure 5-20, the seawater baseline drifted fast, with a rate of -1.233(4)×10⁻⁶ RIU/s, compared to -1.359(7)×10⁻⁸ RIU/s for DI water. The seawater was then spiked with 1 ppm Pb(II) and flowed on the chip to test whether adsorption can be observed (Figure 5-20). Unfortunately, no adsorption was observed. All binding sites were presumably occupied by other ions, especially Fe(III), which was found to bind strongly to the binding sites in the S₄-PMS coating (see section 6.8). Binding processes of other metal ions were discussed in chapter 6. It was also possible that Pb formed stable complexes with the anions in the seawater, such as CO₃²⁻, and thereby lost its binding ability with the binding site in the S₄-PMS coating.

![Figure 5-19](image.png)

Figure 5-19 S₄-PMS coating refractive index change when alternating between DI water and seawater flow. Flow rate = 0.9 ml/min. Seawater was corrosive to the S₄-PMS coating.
Figure 5-20 Seawater spiked with 1ppm Pb(II) adsorption and desorption test on S₄-PMS coated ring resonator. The recorded coating refractive index showed a great decrease due to corrosion, but no measurable change for Pb(II) adsorption or desorption.

5.4 Hg(II) Ion Adsorption and Desorption Tests in DI Water

This section includes the models and all experimental results on the adsorption and desorption of Hg(II) solutions in DI water on S₄-PMS-coated SOI tandem ring resonators. The tests were carried out at different concentrations (1000 ppb to 20 ppb) to determine the relationship between the Hg (II) concentrations, the respective rate constants, available sites and initial adsorption rates.

5.4.1 Tests on the S₄-PMS Coating

The initial way to prepare Hg(II) sample was to dissolve Hg(NO₃)₂•H₂O (Sigma-Aldrich) in DI water to make a 1000 ppb Hg(II) solution. However, the salt hydrolyzed, leaving an orange solid residue that did not dissolve. To fully dissolve the salt, HNO₃ was added to adjust the pH to 5.30. The pH of DI water used when recording desorption curve was also adjusted with HNO₃ to pH = 5.3 to remain consistent. As usual, the data sample rate was 30 seconds per data point, and the flow rate was 0.9 ml/min. The adsorption lasted 3 hours, the desorption process with acidified DI water lasted for 3 hours, and 1 ppm Na₂EDTA solution was added for 1 hour to remove residual bound metal ions. Single exponential and
double exponential equations (5.1) to (5.4) were used to fit the adsorption-desorption curve. The fit parameters are listed in Table 5-16. As shown in Figure 5-21, the fit residuals improved dramatically when changing from a one-site binding model to a two-site binding model for the adsorption and water desorption process. The fit to the desorption process using Na$_2$EDTA did not require a second exponential function, however. The single exponential and double exponential functions fitted equally well. Later tests showed that acidified EDTA was required to fully remove Hg from the coating.

![Comparison between single and double exponential functions fits of 1 ppm Hg(II) ion DI water solution adsorption and desorption on the S$_4$-PMS coating. (Left) The fit to a single binding site adsorption-desorption process with residual. (Right) The fit to a two binding site adsorption-desorption process with residual.](image)

Figure 5-21 Comparison between single and double exponential functions fits of 1 ppm Hg(II) ion DI water solution adsorption and desorption on the S$_4$-PMS coating. (Left) The fit to a single binding site adsorption-desorption process with residual. (Right) The fit to a two binding site adsorption-desorption process with residual.
Table 5-16 Fitting parameters for single exponential functions (5.1) and (5.3), and double exponential equations (5.2) and (5.4) to describe the Hg(II) ion adsorption and desorption on the S-r-PMS coating of Figure 5-21. The decay time \(\tau \) are given in seconds, and the loadings are given in values in three different units, calculated based on Table 3-1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Adsorption</th>
<th>Desorption</th>
<th>Na<sub>2</sub>EDTA rinse</th>
</tr>
</thead>
<tbody>
<tr>
<td>q<sub>e</sub> or q<sub>0</sub></td>
<td>RIU</td>
<td>0.00216 (1)</td>
<td>0.00065(4)</td>
<td>0.00057(9)</td>
</tr>
<tr>
<td>mol(Hg)/mol(film)</td>
<td></td>
<td>0.00179(1)</td>
<td>0.000539(4)</td>
<td>0.000471(7)</td>
</tr>
<tr>
<td>g(Hg)/g(wet film)</td>
<td></td>
<td>0.00916(6)</td>
<td>0.00276(2)</td>
<td>0.00241(4)</td>
</tr>
<tr>
<td>g(Hg)/g(dry film)</td>
<td></td>
<td>0.0119(8)</td>
<td>0.00360(2)</td>
<td>0.00315(5)</td>
</tr>
<tr>
<td>(\tau)</td>
<td>s</td>
<td>1820(20)</td>
<td>3900(90)</td>
<td>1830(30)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Adsorption</th>
<th>Desorption</th>
<th>Na<sub>2</sub>EDTA rinse</th>
</tr>
</thead>
<tbody>
<tr>
<td>q<sub>e,X</sub> or q<sub>0,X</sub></td>
<td>RIU</td>
<td>0.00159(4)</td>
<td>0.00012(1)</td>
<td>0.00011(2)</td>
</tr>
<tr>
<td>mol(Hg)/mol(film)</td>
<td></td>
<td>0.00132(3)</td>
<td>0.0001(1)</td>
<td>0.00008(1)</td>
</tr>
<tr>
<td>g(Hg)/g(wet film)</td>
<td></td>
<td>0.00676(2)</td>
<td>0.00049(5)</td>
<td>0.00045(6)</td>
</tr>
<tr>
<td>g(Hg)/g(dry film)</td>
<td></td>
<td>0.00881(2)</td>
<td>0.00064(7)</td>
<td>0.00058(8)</td>
</tr>
<tr>
<td>(\tau_X) or (\tau_Y)</td>
<td>s</td>
<td>960(30)</td>
<td>220(40)</td>
<td>90(30)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Adsorption</th>
<th>Desorption</th>
<th>Na<sub>2</sub>EDTA rinse</th>
</tr>
</thead>
<tbody>
<tr>
<td>q<sub>e,Y</sub> or q<sub>0,Y</sub></td>
<td>RIU</td>
<td>0.00102(2)</td>
<td>0.00063(4)</td>
<td>0.00059(1)</td>
</tr>
<tr>
<td>mol(Hg)/mol(film)</td>
<td></td>
<td>0.000840(2)</td>
<td>0.000519(4)</td>
<td>0.00048(1)</td>
</tr>
<tr>
<td>g(Hg)/g(wet film)</td>
<td></td>
<td>0.00430(9)</td>
<td>0.00266(2)</td>
<td>0.00248(6)</td>
</tr>
<tr>
<td>g(Hg)/g(dry film)</td>
<td></td>
<td>0.00561(1)</td>
<td>0.00347(3)</td>
<td>0.00323(8)</td>
</tr>
<tr>
<td>(\tau_Y) or (\tau_Y)</td>
<td>(s)</td>
<td>6000(500)</td>
<td>4600(100)</td>
<td>22500(200)</td>
</tr>
</tbody>
</table>

The results indicate that two binding sites compete for the adsorption of Hg(II), with one site having a strong affinity for the metal ion and resulting in a fast adsorption process with a time constant \(\tau = 860 \) s.
comparable to that of Pb(II) ($\tau = 900$ s). The second process was slower, having an almost identical adsorption rate compared to Pb (II), i.e. $\tau = 4500$ s for Hg(II) compared to $\tau = 4650$ s for Pb(II). The desorption with water only removes the loosely bound Hg(II) ions. The second, fast desorption component having $\tau = 220$ s for Hg(II) and a very small amplitude 0.00012 RIU was likely an artifact of the fit. The desorption was the best fit using a single exponential function, with a desorption time constant that was comparable to the Pb(II) desorption rate — it was $\tau = 3900$ s for Hg(II) compared to $\tau = 2150$ s for Pb(II). The remainder of the bound Hg(II) can only be removed with EDTA solution, or, better, with acidified EDTA solution.

5.4.2 Adsorption and Desorption at Different Hg(II) Concentrations

![Graph showing adsorption curves for different Hg(II) concentrations](image)

Figure 5-22 The adsorption curve curves when the resonators were exposed to a series of Hg(II) solutions at 1000 ppb, 500 ppb, 300 ppb, 200 ppb, 100 ppb, 50 ppb, 20 ppb.

The adsorption curves for a series of Hg ion solution samples (1000 ppb, 500 ppb, 300 ppb, 200 ppb, 100 ppb, 50 ppb, and 20 ppb) are shown in Figure 5-22. Each of these adsorption tests lasted 40 minutes. Although the 3-hour adsorption data presented in section 5.4.1 was fitted with a double exponential equation, the data sets shown in this section can be fitted with single exponential equations. The most
plausible explanation was that the strong binding site would bind the Hg ions first before the weak binding sites started to be occupied and, especially at low Hg(II) concentrations, the loading of Hg in the loose binding sites was negligible. The single exponential or linear fits for each curve are shown in Figure 5-23 to Figure 5-29, with fitting parameters shown in Table 5-17 to Table 5-23. For low concentrations (100 ppb, 50 ppb, and 20 ppb), the single exponential functions had a large error on fitting parameters. When the concentrations were low and the adsorption time was short, the linear fit was a good approximation of single exponential fit at the given noise level.

![Graph showing single exponential function fit](image)

Figure 5-23 Single exponential function fit of 1 ppm Hg(II) ion 40 minutes adsorption process on the S$_{4}$-PMS coating, with fit residual shown below.

Table 5-17 Fitting parameters for single exponential function (5.1) and (5.3) fits of the 1 ppm Hg(II) ion adsorption and desorption on the S$_{4}$-PMS coating of the figure above.

<table>
<thead>
<tr>
<th></th>
<th>Adsorption (Single Fit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_e (RIU)</td>
<td>0.00204 (1)</td>
</tr>
<tr>
<td>τ_e (s)</td>
<td>1160(20)</td>
</tr>
</tbody>
</table>
Figure 5-24 Single exponential function fit of 500 ppb Hg(II) ion 40 minutes adsorption process on the S₄-PMS coating, with fit residual shown below.

Table 5-18 Fitting parameters for single exponential function (5.1) and (5.3) fits of the 500 ppb Hg(II) ion adsorption and desorption on the S₄-PMS coating of the figure above.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Adsorption (Single Fit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q_e (RIU)$</td>
<td>0.00191 (4)</td>
</tr>
<tr>
<td>$\tau_a (s)$</td>
<td>2130(90)</td>
</tr>
</tbody>
</table>
Figure 5-25 Single exponential function fit of 300 ppb Hg(II) ion 40 minutes adsorption process on the Si-PMS coating, with fit residual shown below.

Table 5-19 Fitting parameters for single exponential function (5.1) and (5.3) fits of the 300 ppb Hg(II) ion adsorption and desorption on the Si-PMS coating of the figure above.

<table>
<thead>
<tr>
<th></th>
<th>Adsorption (Single Fit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_e (RIU)</td>
<td>0.00191 (8)</td>
</tr>
<tr>
<td>τ_e (s)</td>
<td>3600(200)</td>
</tr>
</tbody>
</table>
Figure 5-26 Single exponential function fit of 200 ppb Hg(II) ion 40 minutes adsorption process on the S₄-PMS coating, with fit residual shown below.

Table 5-20 Fitting parameters for single exponential function (5.1) and (5.3) fits of the 200 ppb Hg(II) ion adsorption and desorption on the S₄-PMS coating of the figure above.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Adsorption (Single Fit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q_e (RIU)$</td>
<td>0.0018 (2)</td>
</tr>
<tr>
<td>τ_a (s)</td>
<td>4900(700)</td>
</tr>
</tbody>
</table>
Figure 5-27 Comparison between single exponential functions and linear fits of 100 ppb Hg(II) ion adsorption and desorption on the S₄-PMS coating. (Left) Single exponential function fit (Right) Linear function fit. Both fits had small residual, but the single exponential fit has large fit errors.

Table 5-21 Fitting parameters for single exponential function (5.1) and (5.3) fits and linear fit of the 100 ppb Hg(II) ion adsorption and desorption on the S₄-PMS coating of the figure above.

<table>
<thead>
<tr>
<th></th>
<th>Adsorption (Single Fit)</th>
<th>Adsorption (Linear Fit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q_e(\text{RIU})$</td>
<td>0.0008(2)</td>
<td>Intercept (RIU) 9(3)×10⁶</td>
</tr>
<tr>
<td>$\tau_a(\text{s})$</td>
<td>50000(1000)</td>
<td>slope 1.63(2)×10⁻⁷</td>
</tr>
</tbody>
</table>
Figure 5-28 Comparison between single exponential functions and linear fits of 50 ppb Hg(II) ion adsorption and desorption on the S4-PMS coating. (Left) Single exponential function fit (Right) Linear function fit. Both fits had small residual, but the single exponential fit has large fit errors.

Table 5-22 Fitting parameters for single exponential function (5.1) and (5.3) fits and linear fit of the 50 ppb Hg(II) ion adsorption and desorption on the S4-PMS coating of the figure above.

<table>
<thead>
<tr>
<th></th>
<th>Adsorption (Single Fit)</th>
<th>Adsorption (Linear Fit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_e (RIU)</td>
<td>0.0004 (1)</td>
<td>Intercept (RIU)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 (4)$\times10^{-6}$</td>
</tr>
<tr>
<td>τ_a (s)</td>
<td>4000(2000)</td>
<td>slope</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.4(3)$\times10^{-8}$</td>
</tr>
</tbody>
</table>
Figure 5-29 Comparison between single exponential functions and linear fits of 20 ppb Hg(II) ion adsorption and desorption on the S₄-PMS coating. (Left) Single exponential function fit (Right) Linear function fit. Both fits had small residual, but the single exponential fit has large fit errors.

Table 5-23 Fitting parameters for single exponential function (5.1) and (5.3) fits and linear fit of the 20 ppb Hg(II) ion adsorption and desorption on the S₄-PMS coating of the figure above.

<table>
<thead>
<tr>
<th></th>
<th>Adsorption (Single Fit)</th>
<th>Adsorption (Linear Fit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_e (\text{RIU}))</td>
<td>0.000032(6)</td>
<td>Intercep (RIU)</td>
</tr>
<tr>
<td>(\tau_a (s))</td>
<td>700(400)</td>
<td>slope</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.6(3)×10⁻⁵</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.1(2)×10⁻⁸</td>
</tr>
</tbody>
</table>

5.4.3 Initial adsorption rates have a linear relationship with the Hg(II) concentration.

The initial adsorption rates could be calculated by using equation (5.5). The data are shown in Table 5-24 and plotted in Figure 5-30. As shown in Table 5-24, the single exponential fit errors were large for low concentrations (100 ppb, 50 ppb, 20 ppb). For these data sets, the values of \(\tau \) were too large and the adsorption time was not long enough to give good fits at the current noise level. Linear fits gave smaller errors, while also giving a lower estimate of the initial adsorption rate. As a result, the single exponential function fit results were used for 1000 ppb to 200 ppb, while the linear fit results were used for 100 ppb to 20 ppb.
A linear relationship could be observed with a slope of \(k_{a,Y} [Y]_0 = 1.74(1) \times 10^9 \) RIU/s. The detection limit was 30 ppb, assuming error free calibration. The detection limit was calculated from the spreadsheet of reference. [51]

Table 5-24 Initial Adsorption rates at different concentration of Hg(II) solutions.

<table>
<thead>
<tr>
<th>Hg(II) Conc. (ppb)</th>
<th>(q_e)</th>
<th>(\tau_e) (s)</th>
<th>Initial Rate (RIU/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>0.00204(1)</td>
<td>1160(20)</td>
<td>1.76(4) \times 10^{-6}</td>
</tr>
<tr>
<td>500</td>
<td>0.00191(4)</td>
<td>2100(90)</td>
<td>8.9(6) \times 10^{-7}</td>
</tr>
<tr>
<td>300</td>
<td>0.00191(8)</td>
<td>3600(200)</td>
<td>5.3(5) \times 10^{-7}</td>
</tr>
<tr>
<td>200</td>
<td>0.0018(2)</td>
<td>4900(700)</td>
<td>3.7(9) \times 10^{-7}</td>
</tr>
<tr>
<td>100</td>
<td>0.0017(4)</td>
<td>8000(2000)</td>
<td>1.7 (8) \times 10^{-7}</td>
</tr>
<tr>
<td>50</td>
<td>0.0012(8)</td>
<td>11000(8000)</td>
<td>1.0(8) \times 10^{-8}</td>
</tr>
<tr>
<td>20</td>
<td>0.000032(6)</td>
<td>700(400)</td>
<td>4(3) \times 10^{-8}</td>
</tr>
</tbody>
</table>

Linear fit

<table>
<thead>
<tr>
<th></th>
<th>slopes</th>
<th>Initial Rate (RIU/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>-</td>
<td>1.63(2) \times 10^{-7}</td>
</tr>
<tr>
<td>50</td>
<td>-</td>
<td>7.4 (3) \times 10^{-8}</td>
</tr>
<tr>
<td>20</td>
<td>-</td>
<td>1.1(2) \times 10^{-8}</td>
</tr>
</tbody>
</table>

Figure 5-30 Initial refractive index change rate at different concentrations of Hg(II) ion. The black dots represented calculated initial rates. The red line represents a linear fit. The two blue lines represent the 99% confidence intervals calculated as ±3\(\sigma \). [51].
5.4.4 Determination of Rate Constants, Equilibrium Constants and Adsorption capacities for Hg(II) ion

This section used the models and all experimental results to determine the films characteristic parameters as described in chapter 3. Binding sites X was used to represented strong binding sites.

Calculate \(k_{a,X} \), \(k_{d,X} \), and \(K_{a,X} \) from Adsorption Curves

The determination of \(k_{a,X} \) and \(k_{d,X} \) for the strong binding sites was done using the same linear fit model as in section 5.1.6. A linear fit of the Hg(II) concentration, [M], to the inverse time constants \(1/\tau_{a,X} \) according to equation (5.9) \(1/\tau_{a,X} = (k_{a,X} + k_{d,X}) \) yielded \(k_{a,X} = 3.33 (8) \times 10^1 \) (RIU•s\(^{-1}\)), \(k_{d,X} = 8 (4) \times 10^{-5} \) s\(^{-1}\), and the equilibrium constant \(K_{a,X} = k_{a,X}/k_{d,X} = 4(3)\times10^5 \) RIU\(^{-1}\). The data are listed in Table 5-25, and the fit curve is shown in Figure 5-31.

However, \(k_{d,X} \) calculated from this method had a large error. In section 5.4.1, the strong binding site’s desorption time constant was \(6000(20) \) s, from which \(k_{d,X} \) could be calculated as \(1.7(1) \times 10^4 \) s\(^{-1}\). By using this more precise \(k_{d,X} \), we calculated a more precise \(K_{a,X} \). In this fit, \(k_{a,X} = 3.17(8) \times 10^1 \) (RIU•s\(^{-1}\)), \(k_{d,X} = 1.7(1)\times10^4 \) s\(^{-1}\), and \(K_{a,X} = k_{a,X}/k_{d,X} = 1.9 (2)\times10^5 \) RIU\(^{-1}\).

Table 5-25 Hg(II) adsorption data sets for \(k_{a,X}, k_{d,X}, K_{a,X}, \) and \([X]_0\) calculation

<table>
<thead>
<tr>
<th>(\text{Hg (II) Conc. (ppb)})</th>
<th>(\text{Hg (II) Conc. (RIU)})</th>
<th>([MX]_{eq,a}) (RIU)</th>
<th>(\tau_{a,X}) (s)</th>
<th>(I/\tau_{a,X} = k_{a,X} \cdot [M]/[MX]_{eq,a})</th>
<th>([M]/[MX]_{eq,a})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>1.050\times10^{-4}</td>
<td>0.00204(1)</td>
<td>1160(20)</td>
<td>8.6(1)\times10^{-4}</td>
<td>0.0514(3)</td>
</tr>
<tr>
<td>500</td>
<td>5.250\times10^{-5}</td>
<td>0.00191(4)</td>
<td>2100(90)</td>
<td>4.7(2)\times10^{-4}</td>
<td>0.0276(7)</td>
</tr>
<tr>
<td>300</td>
<td>3.150\times10^{-5}</td>
<td>0.00191(8)</td>
<td>3600(200)</td>
<td>2.8 (2)\times10^{-4}</td>
<td>0.0165(7)</td>
</tr>
<tr>
<td>200</td>
<td>2.100\times10^{-5}</td>
<td>0.0018(2)</td>
<td>4900(700)</td>
<td>2.1(3)\times10^{-4}</td>
<td>0.0116(1)</td>
</tr>
<tr>
<td>100</td>
<td>1.050\times10^{-5}</td>
<td>0.0008(3)</td>
<td>50000(10000)</td>
<td>2.05(5)\times10^{-5}</td>
<td>0.0012(3)</td>
</tr>
<tr>
<td>50</td>
<td>2.25\times10^{-6}</td>
<td>0.0004(1)</td>
<td>4000(1000)</td>
<td>2(1)\times10^{-4}</td>
<td>0.0140(5)</td>
</tr>
</tbody>
</table>
Figure 5-31 By fitting $1/\tau_{a,X}$ vs. Hg(II) concentration, $k_{a,X}$, $k_{d,X}$, and $K_{a,X}$ for Hg(II) ion adsorption on the S_4-PMS coating can be calculated.

Calculate $K_{a,X}$ and $[X]_0$ from Adsorption Curves

Again, in analogy to the interpretation of the Pb(II) data, the equilibrium constant K was determined using equation (5.10)

$$\frac{[M]}{[MX]_{eq,a}} = \frac{[M]}{[X]_0} + \frac{1}{K_{a,X}[X]_0} \quad (5.10)$$

By fitting $[\text{Hg(II)}]/[\text{Hg(II)}X]_{eq,a}$ vs. $[\text{Hg(II)}]$ with a linear function (Table 5-25, Error! Reference source not found.), $K_{a,X}$ and $[X]_0$ could be calculated from the intercept and the slope.

Figure 5-32 By fitting $[\text{Hg(II)}]/[\text{Hg(II)}X]_{eq,a}$ vs. $[\text{Hg(II)}]$ with a linear function, $K_{a,X}$ and $[X]_0$ for Hg(II) ion adsorption on the S_4-PMS coating can be calculated.
The equilibrium constant $K_{a,X}$ was calculated to be $1(1) \times 10^5$ RIU$^{-1}$, which was close to but less precise than the $K_{a,X}$ in the first method ($1.9(2) \times 10^5$ RIU$^{-1}$). ΔG_m° (Hg(II)X) = $RT \ln K_{a,X} = 38(1)$ kJ/mol. The concentration of total binding sites was $[X]_0 = 0.0022(3)$ RIU. Mole fraction of binding site $X = 0.0022(3)$ RIU/(1.209RIU/mole fraction) = 0.0018(2) mol X binding site / mol film. This value was close to the X binding site surface concentration calculated from Pb(II) tests (0.00188(8) mol X binding site/mol film).

Table 5-26 contains a summary of all the rate constants, equilibrium constants and adsorption capacities for Pb(II) and Hg(II) adsorption and desorption on the S4-PMS film.

Table 5-26 shows that the ΔG_m° (Hg(II)X) was smaller than ΔG_m° (Pb(II)X). Note that the pH for Hg(II) test was 5.3. Under this pH, the binding process was less favored than at neutral pH.

The equilibrium constant errors for Hg(II) was larger than that of Pb(II). One reason was that the short adsorption time (40 minutes vs. 3 hours) lead to large fit errors. A longer adsorption time and tests on more concentrations would lead to more accurate and precise equilibrium constants.
5.5 X-ray Photoelectron Spectroscopy (XPS) Measurement

5.5.1 XPS Measurement Conditions

To verify that the S₄-PMS indeed adsorbed Pb(II) ions, an X-ray Photoelectron Spectrum was recorded. Thin films were coated on silicon wafers using the method described in section 4.5. After post-treatment to remove all the surfactants, two pieces of Si wafer were immersed in 1 ppm Pb(NO₃)₂ solution and 1 ppm Hg(NO₃)₂ solution overnight, respectively. The two pieces of Si wafer were then dried in a desiccator for 12 hours before their XPS spectra were recorded under the conditions described below. Another piece of Si wafer with S₄-PMS but without heavy metal adsorption was also analyzed to obtain a control data set (“blank”).

The XPS instrument was a Thermo Instruments Microlab 310F surface analysis system (Hastings, UK). The analysis was performed under ultrahigh vacuum conditions (10⁻⁹ – 10⁻¹⁰ Torr) using a Mg Kα X-ray source (1253.6 eV) at an anode potential of 15 kV and an emission current of 20 mA. The fixed analyzer transmission (FAT) mode was used for scanning at a pass energy of 20 eV and a surface/detector take-off angle of 75°. The Shirley algorithm was used as the background subtraction method for all peaks. The Powell peak-fit algorithm was used with peak areas normalized between different elements using relative XPS sensitivity factors.[53]

5.5.2 XPS Measurement on S₄-PMS Film after Pb(II) Ion Absorption

As shown in the Pb and Hg XPS spectrum in Figure 5-33, two Pb peaks (left) and two Hg peaks (right) could be observed. The peak doublets represent the two spin-orbit states of the Pb 4f electron signal and two spin-orbit states of the Hg 3d electron signal, respectively.

The ratio of elements was calculated by peak fit, integration, and conversion by the Scofield sensitivity factor. As shown in Table 5-27, the ratio of Pb:S was roughly 1:2, and the ratio of Hg:S was roughly 2:1. The XPS data confirmed that the S₄-PMS film could adsorb Pb(II) and Hg(II). As the Pb(II) and Hg(II) could bind to both S₄ and silanol binding sites, it was hard to tell exactly how many metal ions
were bound to the tetra-sulfide groups. Nevertheless, the amount of metal in the film was much larger than expected even if all tetrasulfide sites were holding one metal ion. At this limit of complete saturation of all \(S_4 \)-groups, an M:S ratio of 1:4 was expected. Instead, the metal loading in the film was higher by at least a factor of 2 for Pb(II) and a factor of 8 for Hg(II). This suggested that a large fraction of metals was either occupying other sites or that one \(S_4 \) site could hold several metal ions.

![Figure 5-33 XPS spectra of adsorbed heavy metals.](image)

Figure 5-33 XPS spectra of adsorbed heavy metals. (Left) XPS spectra of Pb(II) adsorbed in \(S_4 \)-PMS coating. (Right) XPS spectra of Hg(II) adsorbed in \(S_4 \)-PMS coating.

<table>
<thead>
<tr>
<th>Element</th>
<th>Before adsorption</th>
<th>Pb(II) adsorption</th>
<th>Hg(II) adsorption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>21.5</td>
<td>21.45</td>
<td>19.95</td>
</tr>
<tr>
<td>O</td>
<td>55.87</td>
<td>52.47</td>
<td>47.54</td>
</tr>
<tr>
<td>C</td>
<td>21.66</td>
<td>24.45</td>
<td>28.44</td>
</tr>
<tr>
<td>S</td>
<td>0.97</td>
<td>1.14</td>
<td>1.25</td>
</tr>
<tr>
<td>Pb</td>
<td>---</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>Hg</td>
<td>---</td>
<td></td>
<td>2.82</td>
</tr>
</tbody>
</table>
Chapter 6

Adsorption and Desorption of Other Metal Ions

This chapter discussed the response of the tetrasulfide mesoporous silica (S₄-PMS) functionalized SOI ring resonators and tetraethyl orthosilicate mesoporous silica (PMS) functionalized SOI ring resonators to several common ions. These ions include Na(I), K(I), Mg(II), Ca(II), Fe(II), Zn(II), Cd(II), Fe(III), and Al(III). The goal of these tests was to identify possible interferences of these ions on the desired detection of the heavy metal ions Pb(II), and Hg(II) discussed in the previous chapter. The results indicate that single, double, and triple charged metal ions have minor, medium, and large responses, respectively.

For all the tests described in this chapter, the data acquisition rate was one refractive index measurement per 30 s. The adsorption process and the subsequent DI water desorption process were both monitored for 3 hours. The experiment was completed by flushing the chip with 1 ppm aqueous Na₂EDTA solution for 1-3 hours to remove the remaining metal ions and restore the coating if necessary. For the discussion of the model and equations used to analyze the adsorption-desorption curves, see Chapter 3, section 3.2 and Chapter 5, section 5.1.

6.1 Na(I) Ion Adsorption and Desorption Tests

6.1.1 Na(I) Ion S₄-PMS Coating Tests

NaNO₃ was used to make 43.48 µmol/L (1 ppm) NaNO₃ DI water solution. The test results are shown in Figure 6-1, and the fit parameters are shown in Table 6-1. Single exponential functions gave good fits of the adsorption and desorption processes on the S₄-PMS coating, suggesting that the S₄-PMS coating had only one kind of binding site for Na(I).
Figure 6-1 Single exponential function fit of Na(I) ion adsorption and desorption processes on the S₄-PMS coating, with fit residual shown below. The fit was good, suggesting a single binding site model.

Table 6-1 Fitting parameters for single exponential function fit on 43.48 µmol/L (1 ppm) NaNO₃ DI water adsorption and desorption processes on S₄-PMS coating.

<table>
<thead>
<tr>
<th></th>
<th>Adsorption (Single Fit)</th>
<th>Water Desorption (Single Fit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_e or q_0 (RIU)</td>
<td>0.000228 (4)</td>
<td>0.00022(1)</td>
</tr>
<tr>
<td>τ_a or τ_d (s)</td>
<td>1780(60)</td>
<td>1070(40)</td>
</tr>
</tbody>
</table>

6.1.2 Na(I) Ion PMS Coating Tests

NaNO₃ was used to make 4.826 µmol/L NaNO₃ DI water solution. The test results are shown in Figure 6-2, and the fit parameters are shown in Table 6-2. Single exponential functions gave good fits of the adsorption and desorption processes on the PMS coating, suggesting the PMS coating had one kind of binding site for Na(I).
Figure 6-2 Single exponential function fit of Na(I) ion adsorption and desorption processes on the TOESMPS coating, with fit residual shown below. The fit was good suggesting a single binding site model.

Table 6-2 Fitting parameters for single exponential function fit on 4.826 µmol/L NaNO$_3$ DI water adsorption and desorption processes on PMS coating

<table>
<thead>
<tr>
<th></th>
<th>Adsorption (Single Fit)</th>
<th>Water Desorption (Single Fit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_e or q_0 (RIU)</td>
<td>0.000157 (1)</td>
<td>0.000168(3)</td>
</tr>
<tr>
<td>τ_a or τ_d (s)</td>
<td>2690(60)</td>
<td>1430(40)</td>
</tr>
</tbody>
</table>

The capacity of the second film was slightly less – not surprising given its differing composition. Note that the small response in this test may be misleading. The Na(I) ion had a small polarizability, and the mole fraction in the film may, in fact, be very high. In both films, the adsorption rate constant was slightly greater than the desorption rate constant and comparable to that of the loosely bound heavy metal ions.

6.2 K(I) Ion Adsorption and Desorption Tests

6.2.1 K(I) Ion S$_4$-PMS Coating Tests

KNO$_3$ was used to make 25.58 µmol/L (1 ppm) KNO$_3$ DI water solution. The test results are shown in Figure 6-3, and the fit parameters are shown in Table 6-3. Single exponential functions gave good fits
of the adsorption and desorption processes on the \(S_4 \)-PMS coating, suggesting again that the \(S_4 \)-PMS coating had only one kind of binding site for K(I).

Figure 6-3 Single exponential function fit of K(I) ion adsorption and desorption processes on the \(S_4 \)-PMS coating, with fit residual shown below. The fit was good suggesting a single binding site model.

Table 6-3 Fitting parameters for single exponential function fit on 25.58 µmol/L (1 ppm) KNO\(_3\) DI water adsorption and desorption processes on \(S_4 \)-PMS coating.

<table>
<thead>
<tr>
<th></th>
<th>Adsorption (Single Fit)</th>
<th>Water Desorption (Single Fit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_e) or (q_0) (RIU)</td>
<td>0.000127 (3)</td>
<td>0.000124(4)</td>
</tr>
<tr>
<td>(\tau_a) or (\tau_d) (s)</td>
<td>1640(70)</td>
<td>970(50)</td>
</tr>
</tbody>
</table>

6.2.2 K(I) Ion PMS Coating Tests

KNO\(_3\) was used to make 4.826 µmol/L KNO\(_3\) DI water solution. The test results are shown in Figure 6-4, and the fit parameters are shown in Table 6-4. Single exponential functions gave good fits of the adsorption and desorption processes on the PMS coating, suggesting that the PMS coating had only one kind of binding site for K(I).
Figure 6-4 Single exponential function fit of K(I) ion adsorption and desorption processes on the TOESMPS coating, with fit residual shown below. The fit was good suggesting a single binding site model.

Table 6-4 Fitting parameters for single exponential function fit on 4.826 µmol/L KNO₃ DI water adsorption and desorption processes on PMS coating

<table>
<thead>
<tr>
<th></th>
<th>Adsorption (Single Fit)</th>
<th>Water Desorption (Single Fit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_e or q_0 (RIU)</td>
<td>0.000092 (9)</td>
<td>0.00009 (1)</td>
</tr>
<tr>
<td>τ_a or τ_d (s)</td>
<td>2430(70)</td>
<td>1540(30)</td>
</tr>
</tbody>
</table>

The response curves and time constants were similar to those obtained for sodium ions, and the same conclusions apply.

6.3 Mg(II) Ion Adsorption and Desorption Tests

Mg(NO₃)₂ was used to make 41.15 µmol/L (1ppm) Mg(NO₃)₂ DI water solution. The test results are shown in Figure 6-5, and the fit parameters are shown in Table 6-5. Single exponential functions gave good fits of the adsorption and desorption processes on the S₄-PMS coating, suggesting that the S₄-PMS coating had one kind of binding site for Mg(II).
Figure 6-5 Single exponential function fit of Mg(II) ion adsorption and desorption processes on the S₄-PMS coating, with fit residual shown below. The fit was good suggesting a single binding site model.

Table 6-5 Fitting parameters for single exponential function fit on 41.15 µmol/L (1ppm) Mg(NO₃)₂ DI water adsorption and desorption processes on S₄-PMS coating.

<table>
<thead>
<tr>
<th></th>
<th>Adsorption (Single Fit)</th>
<th>Water Desorption (Single Fit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>qₑ or q₀ (RIU)</td>
<td>0.000572 (9)</td>
<td>0.000484(5)</td>
</tr>
<tr>
<td>τₐ or τₑ (s)</td>
<td>330(8)</td>
<td>970(20)</td>
</tr>
</tbody>
</table>

The adsorption and desorption processes were remarkably fast when Mg(II) was used as a metal ion. While only a single site was responsible for binding the ion, it did appear that the affinity was quite strong.

6.4 Ca(II) Ion Adsorption and Desorption Tests

6.4.1 Ca(II) Ion S₄-PMS Coating Tests

Ca(NO₃)₂ was used to make 25.00 µmol/L (1ppm) Ca(NO₃)₂ DI water solution. The test results are shown in Figure 6-6, and the fit parameters are shown in Table 6-6. Single exponential functions gave good
fits of the adsorption and desorption processes on the S₄-PMS coating, suggesting that the S₄-PMS coating had one kind of binding site for Ca(II).

Figure 6-6 Single exponential function fit of Ca(II) ion adsorption and desorption processes on the S₄-PMS coating, with fit residual shown below. The fit was good suggesting a single binding site model.

Table 6-6 Fitting parameters for single exponential function fit on 25.00 µmol/L (1ppm)Ca(NO₃)₂ DI water adsorption and desorption processes on S₄-PMS coating.

<table>
<thead>
<tr>
<th></th>
<th>Adsorption (Single Fit)</th>
<th>Water Desorption (Single Fit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>qₑ or qₒ (RIU)</td>
<td>0.000693(8)</td>
<td>0.000692(7)</td>
</tr>
<tr>
<td>τₐ or τₙ (s)</td>
<td>339(6)</td>
<td>2290(20)</td>
</tr>
</tbody>
</table>

Compared to Mg(II) the Ca(II) desorption process was much slower while the adsorption rate was almost identical. Ca(II) appeared to be more strongly bound to the single type of binding site.

6.4.2 Ca(II) Ion PMS Coating Tests

Ca(NO₃)₂ was used to make 4.826 µmol/L Ca(NO₃)₂ DI water solution. The test results are shown in Figure 6-7, and the fit parameters are shown in Table 6-7. Single exponential functions gave good fits of the adsorption and desorption processes on the PMS coating, suggesting that the PMS coating had one kind of binding site for Ca(II).
Figure 6-7 Single exponential function fit of Ca(II) ion adsorption and desorption processes on the PMS coating, with fit residual shown below. The fit was good suggesting a single binding site model.

Table 6-7 Fitting parameters for single exponential function fit on 4.826 µmol/L Ca(NO₃)₂ DI water adsorption and desorption processes on PMS coating

<table>
<thead>
<tr>
<th></th>
<th>Adsorption (Single Fit)</th>
<th>Water Desorption (Single Fit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_e) or (q_0) (RIU)</td>
<td>0.000422 (2)</td>
<td>0.000452(3)</td>
</tr>
<tr>
<td>(\tau_a) or (\tau_d) (s)</td>
<td>1930(20)</td>
<td>2490(30)</td>
</tr>
</tbody>
</table>

The Ca(II) ion adsorbed only quite slowly into the film without a tetrasulfide binding site and was readily removed using water with a rate that was comparable to that of the tetrasulfide containing film. Note that the Ca(II) solution in the PMS tests had lower Ca(II) concentration (4.826 µmol/L) than that in \(S_4 \)-PMS test (25.00 µmol/L, 1 ppm). As a result, the \(S_4 \)-PMS test had a higher adsorption rate, which largely due to the higher concentration. As it had been demonstrated in chapter 5, high concentration ion solution had higher adsorption rates and a smaller \(\tau_s \).
6.5 Fe(II) Ion Adsorption and Desorption Tests

6.5.1 Fe(II) Ion S₄-PMS Coating Tests

Fe(NO₃)₂ was used to make 17.86 µmol/L (1 ppm) Fe(NO₃)₂ DI water solution. The comparison between single and double exponential functions fits of Fe(II) ion adsorption-desorption curve are shown in Figure 6-8, and the fit parameters are shown in Table 6-8. Single exponential functions gave a poor fit to the adsorption-desorption curve while double exponential functions gave a much better fit, suggesting that the S₄-PMS coating had two kinds of binding sites for Fe(II).

![Figure 6-8](image)

Figure 6-8 Comparison between single and double exponential functions fits of Fe(II) ion adsorption and desorption on the S₄-PMS coating. (Left) Single exponential functions fit with fit residual shown below. (Right) Double exponential functions with fit residual shown below.

Table 6-8 Fitting parameters for single and double exponential functions fits of 17.86 µmol/L (1 ppm) Fe(II) ion adsorption and desorption on the S₄-PMS coating.

<table>
<thead>
<tr>
<th></th>
<th>Single site model</th>
<th>Two site model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adsorption</td>
<td>Desorption</td>
</tr>
<tr>
<td>qₐ or q₀</td>
<td>0.00079(1)</td>
<td>0.000842(3)</td>
</tr>
<tr>
<td>(RIU)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>τ (s)</td>
<td>758(10)</td>
<td>1910(10)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>qₐ,Y or q₀,Y</td>
<td>0.000195(7)</td>
<td>0.00018(3)</td>
</tr>
<tr>
<td>(RIU)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>τ (s)</td>
<td>19400(100)</td>
<td>620(90)</td>
</tr>
</tbody>
</table>
The fitting parameters indicated that the majority of the Fe (II) ions bind strongly and quickly to one of the binding sites. A smaller fraction was rather loosely bound and readily removed.

6.5.2 Fe(II) Ion PMS Coating Tests

Fe(NO$_3$)$_2$ was used to make 4.826 µmol/L Fe(NO$_3$)$_2$ DI water solution. The test results are shown in Figure 6-9, and the fit parameters are shown in Table 6-9. Single exponential functions gave good fits of the adsorption and desorption processes on the PMS coating, suggesting that the PMS coating had one kind of binding site for Fe(II).

Figure 6-9 Single exponential function fit of Fe(II) ion adsorption and desorption processes on the TOESMPS coating, with fit residual shown below. The fit was good, suggesting a single binding site model.

Table 6-9 Fitting parameters for single exponential function fit on 4.826 µmol/L Fe(NO$_3$)$_2$ DI water adsorption and desorption processes on PMS coating

<table>
<thead>
<tr>
<th></th>
<th>Adsorption (Single Fit)</th>
<th>Water Desorption (Single Fit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_e or q_0 (RIU)</td>
<td>0.000464 (3)</td>
<td>0.000472(2)</td>
</tr>
<tr>
<td>τ_a or τ_d (s)</td>
<td>1890(20)</td>
<td>3090(30)</td>
</tr>
</tbody>
</table>

The TEOS-based film showed a Fe(II) adsorption rate that fell between the two rates for the tetrasulfide-containing film, whereas the desorption rate was slower than either one of them. It appears
therefore that more binding sites for Fe(II) were available in this film and that they form a quite strong binding.

6.6 Zn(II) Ion Adsorption and Desorption Tests

Zn(NO$_3$)$_2$ was used to make 15.29 µmol/L (1ppm) Zn(NO$_3$)$_2$ DI water solution. The comparison between single and double exponential functions fits of Zn (II) ion adsorption-desorption curves were shown in Figure 6-10, and the fit parameters are shown in Table 6-10. Single exponential functions gave poor fits of the adsorption and desorption processes while double exponential functions gave good fits, suggesting that the S$_4$-PMS coating had two kinds of binding site for Zn (II).

Figure 6-10 Comparison between single and double exponential functions fits of Zn(II) ion adsorption and desorption on the S$_4$-PMS coating. (Left) Single exponential functions fit with fit residual shown below. The fit was poor. (Right) Double exponential functions fit with fit residual shown below. This fit was much better than the single exponential functions fit, suggesting a double binding site model.
Table 6-10 Fitting parameters for single and double exponential functions fits of 15.29 µmol/L (1ppm) Zn(II) ion adsorption and desorption on the S₂-PMS coating.

<table>
<thead>
<tr>
<th></th>
<th>Single site model</th>
<th>Two site model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adsorption</td>
<td>Desorption</td>
</tr>
<tr>
<td>(q_e) or (q_\theta) (RIU)</td>
<td>0.00120 (2)</td>
<td>0.001330(5)</td>
</tr>
<tr>
<td>(\tau) (s)</td>
<td>640(20)</td>
<td>2460(20)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

The pattern for Zn(II) was almost identical to that for Fe(II). The parameters showed that the majority of the Zn(II) ions bound strongly and quickly to one of the binding sites and a smaller fraction was rather loosely bound and readily removed.

6.7 Cd(II) Ion Adsorption and Desorption Tests

Cd(NO₃)₂ was used to make 8.900 µmol/L (1ppm) Cd(NO₃)₂ DI water solution. The comparison between single exponential functions, and double exponential functions fits of Cd(II) ion adsorption-desorption curves were shown in Figure 6-11, and the fit parameters are shown in Table 6-11. Single exponential functions gave poor fits of the adsorption and desorption processes while double exponential functions gave good fits, suggesting S₂-PMS coating had two kinds of binding site for Cd(II). Notice that the Na₂EDTA desorption process took only 90 to 120 seconds (3 to 4 data points) to complete. The lack of data points on the desorption curve led to a better single exponential function fit.
Figure 6-11 Comparison between single and double exponential functions fits of Cd(II) ion adsorption and desorption on the S₄-PMS coating. (Left) Single exponential functions fit with fit residual shown below. The fit was poor. (Right) Double exponential functions fit with fit residual shown below. This fit was much better than the single exponential functions fit, suggesting a double binding site model.

Table 6-11 Fitting parameters for single and double exponential functions fits of 8.900 µmol/L (1ppm) Cd(II) ion adsorption and desorption on the S₄-PMS coating.

<table>
<thead>
<tr>
<th></th>
<th>Single site model</th>
<th>Two site model</th>
<th>Na₂EDTA rinse</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adsorption</td>
<td>Desorption</td>
<td>Na₂EDTA rinse</td>
</tr>
<tr>
<td>qₑ or q₀</td>
<td>0.001105(2)</td>
<td>0.000941(6)</td>
<td>0.00019(2)</td>
</tr>
<tr>
<td>(RIU)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>τ (s)</td>
<td>376(10)</td>
<td>2380(30)</td>
<td>34(6)</td>
</tr>
<tr>
<td>qₑ,X or q₀,X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(RIU)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>τₓ or τₓ</td>
<td>267(5)</td>
<td>2730(70)</td>
<td>34(6)</td>
</tr>
<tr>
<td>qₑ,Y or q₀,Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(RIU)</td>
<td>0.00021(2)</td>
<td>0.00019(2)</td>
<td></td>
</tr>
<tr>
<td>τᵧ or τᵧ</td>
<td>37000(2000)</td>
<td>330(60)</td>
<td></td>
</tr>
</tbody>
</table>

As for Zn(II) and Fe(II) in previous sections, we also found that Cd(II) showed binding to two distinct sites. One had such a high affinity to Cd(II) that EDTA was required to remove the metal ion. The rates were comparable to those observed for the two lighter ions, though.
6.8 Fe(III) Ion Adsorption and Desorption Tests

6.8.1 Fe(III) Ion S₄-PMS Coating Tests

Fe(NO₃)₃ was used to make 17.90 µmol/L (1ppm) Fe(NO₃)₃ DI water solution. The comparison between single and double exponential functions fits of Fe(III) ion adsorption-desorption curve are shown in Figure 6-12, and the fit parameters are shown in Table 6-12. Double exponential functions gave much better fits of the adsorption and Na₂EDTA desorption processes than those using single exponential functions. However, for the DI water desorption process, the large error in double exponential fitting parameters suggest that a single-exponential fit should be used. These results suggest that S₄-PMS coating has two kinds of binding site for Fe(III). Only the ions binding to one kind of binding site, however, can be removed by DI water at a slow rate (τ₁ =50000 s). Ions bound to the other binding site can only be removed by Na₂EDTA solution.

![Figure 6-12](image.png)

Figure 6-12 Comparison between single and double exponential functions fits of Fe(III) ion adsorption and desorption on the S₄-PMS coating. (Left) Single exponential functions fit, with fit residual shown below. The fit was poor. (Right) Double exponential functions fit, with fit residual shown below. This fit was much better than the single exponential functions fit, suggesting a double binding site model.
Table 6-12 Fitting parameters for single and double exponential functions fits of 17.90 µmol/L (1ppm) Fe(III) ion adsorption and desorption on the S4-PMS coating.

<table>
<thead>
<tr>
<th></th>
<th>Single site model</th>
<th>Two site model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adsorption</td>
<td>Desorption</td>
</tr>
<tr>
<td>q_0 or q_0 (RIU)</td>
<td>0.00528 (4)</td>
<td>0.001(2)</td>
</tr>
<tr>
<td>τ (s)</td>
<td>2910(6)</td>
<td>50000(9000)</td>
</tr>
<tr>
<td></td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

The single exponential adsorption model gave a poor fit to the data so that it was almost certain that two binding sites compete. The fast uptake process had a rate comparable to that of Pb(II), Hg(II) and other heavy metal ions, but was entirely non-reversible in water (the fits to a bi-exponential model did not converge). The slower of the two processes was reversible but only very slowly. It was interesting that the desorption process using the EDTA chelating agent also shows clearly a bi-exponential behaviour. The faster of the two processes presumably removed Fe(III) from the relatively weak binding sites, whereas the slow process removed the tightly bound Fe(III). By comparison, the removal of divalent ions using EDTA was much faster with $\tau < 200$ s, with the possible exception of Hg(II) and Pb(II), although even in those cases the slow component contained in the EDTA removal process was not very pronounced.

6.8.2 Fe(III) Ion PMS Coating Tests

Fe(NO₃)₃ was used to make 4.826 µmol/L Fe(NO₃)₂ DI water solution. The test results are shown in Figure 6-13, and the fit parameters are shown in Table 6-13. Single exponential functions gave good fits of the adsorption and desorption processes on the PMS coating, suggesting PMS coating have one kind of binding site for Fe(III).
Figure 6-13 Single exponential function fit of Fe(II) ion adsorption and desorption processes on the TOESMPS coating, with fit residual shown below. The fit was good suggesting a single binding site model.

Table 6-13 Fitting parameters for single exponential function fit on 4.826 µmol/L Fe(NO₃)₃ DI water adsorption and desorption processes on PMS coating

<table>
<thead>
<tr>
<th></th>
<th>Adsorption</th>
<th>Desorption</th>
<th>Na₂EDTA rinse</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_e or q_0 (RIU)</td>
<td>0.000871 (2)</td>
<td>0.000877 (2)</td>
<td>0.000680 (1)</td>
</tr>
<tr>
<td>τ (s)</td>
<td>2340 (60)</td>
<td>39500 (800)</td>
<td>1540 (10)</td>
</tr>
</tbody>
</table>

The adsorption time of 2340 s fell between the two times observed for the S₄-PMS model, while the desorption processes on Fe(III) in the PMS film was slow but observable with a time constant similar to the desorption from the less active binding site in S₄-PMS. This suggested the affinity of the silica film to Fe(III) is surprisingly high.

6.9 Al(III) Ion Adsorption and Desorption Tests

Al(NO₃)₃ was used to make 37.04 µmol/L (1ppm) Al(NO₃)₃ DI water solution. The comparison between single and double exponential functions fits of Al(III) ion adsorption-desorption curve are shown.
in Figure 6-14, and the fit parameters are shown in Table 6-14. Similar to the case of Fe(III) adsorption and desorption, double exponential functions gave much better fits of the adsorption and Na$_2$EDTA desorption processes than that of single exponential functions. However, for the DI water desorption process, the large error in the double exponential fitting parameters suggests that a single exponential fit may be more appropriate. These results suggest that S$_4$-PMS coating had two kinds of binding sites for Al(III). Only the ions bind to one kind of binding site, however, could be removed by DI water at a slow rate ($\tau_1 = 23000$ s). The remaining ions, as well as those bound to the other binding site, could only be removed by Na$_2$EDTA solution.

![Figure 6-14](image)

Figure 6-14 *Comparison between single and double exponential functions fits of Al(III) ion adsorption and desorption on the S$_4$-PMS coating. (Left) Single exponential functions fit, with fit residual shown below. The fit was poor. (Right) Double exponential functions fit, with fit residual shown below. This fit was much better than the single exponential functions fit, suggesting a double binding site model.*
Table 6-14 Fitting parameters for single and double exponential functions fits of 37.04 µmol/L (1ppm) Al(III) ion adsorption and desorption on the S₄-PMS coating.

<table>
<thead>
<tr>
<th></th>
<th>Single site model</th>
<th>Two site model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adsorption</td>
<td>Desorption</td>
</tr>
<tr>
<td>qₑ or q₀ (RIU)</td>
<td>0.0080 (8)</td>
<td>0.0013(2)</td>
</tr>
<tr>
<td>τ (s)</td>
<td>1990(40)</td>
<td>22847(3980)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Al(III) shows a similar behaviour to Fe(III). It was found that the fast uptake process was not reversible but that the slow adsorption could be reversed, albeit very gradually. The rinsing process with EDTA was also biexponential and likely indicative of removal from two distinct binding sites.

6.10 Summary

As shown in Table 6-15, the test results suggest that the PMS coatings had only one type of binding site, likely the deprotonated silanol groups, which bound all the cations in our tests to a different extent. By comparison, the S₄-PMS coating had an additional binding site in the form of the tetra-sulfide group, which does not bind Na(I), K(I), Mg(II), Ca(II), Fe(II), and Zn(II), but does bind to Cd(II), Pb(II), Hg(II), Fe(III), and Al(III). The trend was reflected approximately by the solubility of the corresponding metal sulfides. Consider that sulfides of the alkali and alkaline earth metals have some water solubility whereas sulfides of the Cu and Zn families (including CuS, AgS AuS, ZnS, CdS, and HgS) are among the least soluble compounds known. Similarly, PbS has such a low solubility that it is one of the least toxic forms of lead. Both FeS and Fe₂S₃ are considered insoluble in water whereas Al₂S₃ decomposes in water.
Table 6-15 Different ion binding patterns with PMS coating and S₄-PMS coating.[54]

<table>
<thead>
<tr>
<th>Cation</th>
<th>Adsorption</th>
<th>DI water Desorption</th>
<th>Na₂EDTA Desorption</th>
<th>Adsorption</th>
<th>DI water Desorption</th>
<th>Na₂EDTA Desorption</th>
<th>Binding to silanol</th>
<th>Binding to sulfur</th>
<th>Kₛ of metal sulfide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na(I)</td>
<td>Single</td>
<td>Single</td>
<td>n/a</td>
<td>Single</td>
<td>Single</td>
<td>n/a</td>
<td>Weak</td>
<td>No</td>
<td>(reacts)</td>
</tr>
<tr>
<td>K(I)</td>
<td>Single</td>
<td>Single</td>
<td>n/a</td>
<td>Single</td>
<td>Single</td>
<td>n/a</td>
<td>Weak</td>
<td>No</td>
<td>(reacts)</td>
</tr>
<tr>
<td>Mg(II)</td>
<td>Single</td>
<td>Single</td>
<td>n/a</td>
<td>Single</td>
<td>Single</td>
<td>n/a</td>
<td>No</td>
<td>(reacts)</td>
<td></td>
</tr>
<tr>
<td>Ca(II)</td>
<td>Single</td>
<td>Single</td>
<td>n/a</td>
<td>Single</td>
<td>Single</td>
<td>n/a</td>
<td>No</td>
<td>(reacts)</td>
<td></td>
</tr>
<tr>
<td>Fe(II)</td>
<td>Single</td>
<td>Single</td>
<td>n/a</td>
<td>Single</td>
<td>Single</td>
<td>n/a</td>
<td>Weak</td>
<td>6×10⁻¹⁹</td>
<td></td>
</tr>
<tr>
<td>Zn(II)</td>
<td>Single</td>
<td>Single</td>
<td>n/a</td>
<td>Single</td>
<td>Single</td>
<td>n/a</td>
<td>Weak</td>
<td>2×10⁻²⁵</td>
<td></td>
</tr>
<tr>
<td>Cd(II)</td>
<td>Single</td>
<td>Single</td>
<td>Single</td>
<td>Double</td>
<td>Double</td>
<td>Double</td>
<td>Medium</td>
<td>8.0×10⁻²⁷</td>
<td></td>
</tr>
<tr>
<td>Pb(II)</td>
<td>Single</td>
<td>Single</td>
<td>Single</td>
<td>Double</td>
<td>Double</td>
<td>Double</td>
<td>Medium</td>
<td>3×10⁻⁷⁹</td>
<td></td>
</tr>
<tr>
<td>Hg(II)</td>
<td>Single</td>
<td>Single</td>
<td>Single</td>
<td>Double</td>
<td>Double</td>
<td>Double</td>
<td>Strong</td>
<td>1.6×10⁻⁵¹</td>
<td></td>
</tr>
<tr>
<td>Fe(III)</td>
<td>Single</td>
<td>Single</td>
<td>Single</td>
<td>Double</td>
<td>Single</td>
<td>Double</td>
<td>Strong</td>
<td>Strong</td>
<td>unstable</td>
</tr>
<tr>
<td>Al(III)</td>
<td>Single</td>
<td>Single</td>
<td>Single</td>
<td>Double</td>
<td>Single</td>
<td>Double</td>
<td>Strong</td>
<td>Strong</td>
<td>unknown</td>
</tr>
</tbody>
</table>

Table 6-16 Cation and oxide polarizability for some ions [44, 47]

<table>
<thead>
<tr>
<th>Oxide</th>
<th>Cation polarizability (Å³)</th>
<th>Oxide polarizability (Å³)</th>
<th>Cation</th>
<th>Cation polarizability (Å³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuO</td>
<td>0.437</td>
<td>2.838</td>
<td>Cu</td>
<td>1.7</td>
</tr>
<tr>
<td>MgO</td>
<td>0.094</td>
<td>1.699</td>
<td>Na</td>
<td>0.2</td>
</tr>
<tr>
<td>CaO</td>
<td>0.469</td>
<td>2.505</td>
<td>K</td>
<td>0.9</td>
</tr>
<tr>
<td>ZnO</td>
<td>0.283</td>
<td>2.612</td>
<td>Zn</td>
<td>0.8</td>
</tr>
<tr>
<td>CdO</td>
<td>0.1054</td>
<td>2.909</td>
<td>Cd</td>
<td>1.8</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>0.054</td>
<td>1.365</td>
<td>Al</td>
<td>0.053</td>
</tr>
<tr>
<td>PbO</td>
<td>3.623</td>
<td>3.450</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.437</td>
<td>2.647</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 6-15 and Table 6-17 show the maximum refractive index change \((q_{e,1} + q_{e,2})\) for each of the 1-ppm metal ion solutions, the maximum refractive index changes for each ion per \(\mu\)mol/L, as well as the initial refractive index change rates during adsorption process for each 1 ppm ion solution, and the initial refractive index change rates during adsorption process for each ion per \(\mu\)mol/L.

The maximum refractive index change for each ion depends on the mole of ions bound to the coating and the polarizability of the ions. The relationship between polarizability and refractive index follows the Lorentz–Lorenz equation. Table 6-16 listed some of the ions’ cation polarizability and oxide polarizability from two publications. The values in the table suggest large increases on polarizability from cation to oxide for the all the metal ions, with the exception of Pb(II), which drops slightly. Some of the values from the two publications didn’t agree on the same elements. At least, these values gave us a rough idea of the ion polarizability.

The high maximum refractive index change for Fe(III) and Al(III) is probably due to their high affinity, as their polarizability are not particularly high. For Na(I) and K(I), the small maximum refractive index changes and the low initial adsorption rates could be explained by their low affinity to the coating and low polarizability.

For Mg(II), Ca(II), Fe(II), and Zn(II), the maximum refractive index change and initial adsorption rate increased with the atomic weight and the number of electrons.

For Fe(II), and Zn(II), Cd(II), Pb(II), and Hg(II), which bound to the tetra-sulfide binding site, their affinity was consistent with the \(K_{sp}\) value of the corresponding metal sulfides. The Hg(II) initial adsorption rates cannot be directly compared with that of the other ions, as the Hg(II) adsorption process was tested at a pH = 5.3 (instead of a neutral pH). At the low pH, some of the binding sites were protonated, and the binding process was expected to be slower. At the same pH level, the initial adsorption rate for Hg(II) would probably be higher than that of Pb(II).

Fe(III) and Al(III) ions showed a strong affinity with both silanol groups and the tetra-sulfide group, probably due to high charge-charge interaction.
Figure 6-15 Column graphs comparison between different ion adsorption on S_2-PMS film. (a) Maximum refractive index changes for each ion. (b) Maximum refractive index changes for each ion per μmol/L. (c) Initial refractive index change rates during adsorption process for each ion (d) Initial refractive index change rates during adsorption process for each ion per μmol/L.
Table 6-17 Data sets for column graphs comparison between different ion adsorption on S₄-PMS film (above).

<table>
<thead>
<tr>
<th>Ion</th>
<th>q_e (RIU)</th>
<th>τ_a (s)</th>
<th>q_e (RIU)</th>
<th>τ_a (s)</th>
<th>q_e + q_e (RIU)</th>
<th>Initial Refractive Change Rate (RIU/s)</th>
<th>$(q_e$ + q_e) /Conc. (RIU/L/µmol)</th>
<th>Initial Refractive Change Rate /Conc. (RIU/L/µmol/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na(I)</td>
<td>0.000228</td>
<td>1775</td>
<td>---</td>
<td>---</td>
<td>0.000228</td>
<td>1.28×10⁻⁷</td>
<td>0.000005</td>
<td>2.96×10⁻⁹</td>
</tr>
<tr>
<td>K(I)</td>
<td>0.000127</td>
<td>1644</td>
<td>---</td>
<td>---</td>
<td>0.000127</td>
<td>7.71×10⁻⁸</td>
<td>0.000005</td>
<td>3.01×10⁻⁹</td>
</tr>
<tr>
<td>Mg(II)</td>
<td>0.000572</td>
<td>330</td>
<td>---</td>
<td>---</td>
<td>0.000572</td>
<td>1.73×10⁻⁶</td>
<td>0.000014</td>
<td>4.21×10⁻⁸</td>
</tr>
<tr>
<td>Ca(II)</td>
<td>0.000693</td>
<td>339</td>
<td>---</td>
<td>---</td>
<td>0.000693</td>
<td>2.05×10⁻⁶</td>
<td>0.000028</td>
<td>8.21×10⁻⁸</td>
</tr>
<tr>
<td>Fe(II)</td>
<td>0.000764</td>
<td>616</td>
<td>0.000195</td>
<td>19422</td>
<td>0.000959</td>
<td>1.25×10⁻⁶</td>
<td>0.000054</td>
<td>6.99×10⁻⁸</td>
</tr>
<tr>
<td>Zn(II)</td>
<td>0.001169</td>
<td>421</td>
<td>0.000445</td>
<td>14867</td>
<td>0.001614</td>
<td>2.81×10⁻⁶</td>
<td>0.000106</td>
<td>1.84×10⁻⁷</td>
</tr>
<tr>
<td>Cd(II)</td>
<td>0.000967</td>
<td>267</td>
<td>0.000214</td>
<td>9176</td>
<td>0.001181</td>
<td>3.65×10⁻⁶</td>
<td>0.000133</td>
<td>4.10×10⁻⁷</td>
</tr>
<tr>
<td>Pb(II)</td>
<td>0.001434</td>
<td>301</td>
<td>0.000189</td>
<td>4652</td>
<td>0.001624</td>
<td>4.81×10⁻⁶</td>
<td>0.000336</td>
<td>9.96×10⁻⁷</td>
</tr>
<tr>
<td>Hg(II)</td>
<td>0.001595</td>
<td>958</td>
<td>0.001016</td>
<td>5960</td>
<td>0.002610</td>
<td>1.84×10⁻⁶</td>
<td>0.000524</td>
<td>3.68×10⁻⁷</td>
</tr>
<tr>
<td>Fe(III)</td>
<td>0.003164</td>
<td>826</td>
<td>0.005099</td>
<td>11163</td>
<td>0.008263</td>
<td>4.29×10⁻⁶</td>
<td>0.000461</td>
<td>2.39×10⁻⁷</td>
</tr>
<tr>
<td>Al(III)</td>
<td>0.005542</td>
<td>631</td>
<td>0.005193</td>
<td>5637</td>
<td>0.010735</td>
<td>9.71×10⁻⁶</td>
<td>0.000290</td>
<td>2.62×10⁻⁷</td>
</tr>
</tbody>
</table>

In Figure 6-16 and Table 6-18, we showed the maximum refractive index change (q_e) and initial refractive index change for six metal ions (Na(I), K(I), Ca(II), Fe(II), Pb(II), and Fe(III)) solutions. All solutions had the same concentration of 4.826 mmol/L. Like the data from the S₄-PMS film, the light, singly charged ions gave only tiny shifts, while doubly and triply charged ions gave large and quick shifts. The difference was probably due to high affinity to the silanol groups, for their polarizabilities were not particularly high.
Figure 6-16 Column graphs comparison between different ion adsorptions on PMS film. (Left) the asymptotic refractive index change, \(q_e \), in the adsorption processes. (Right), the initial refractive index change in the adsorption processes.

Table 6-18 Data sets for column graphs comparison between different ion adsorption on PMS film(Figure 6-16).

<table>
<thead>
<tr>
<th>Metal ions</th>
<th>(q_e) (RIU)</th>
<th>(\tau_a) (s)</th>
<th>Initial Refractive Change Rate (RIU/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na(I)</td>
<td>0.000157 (1)</td>
<td>2690(60)</td>
<td>5.8(2)×10^{-8}</td>
</tr>
<tr>
<td>K(I)</td>
<td>0.000092 (9)</td>
<td>2430(70)</td>
<td>3.8(2)×10^{-8}</td>
</tr>
<tr>
<td>Ca(II)</td>
<td>0.000422 (2)</td>
<td>1930(20)</td>
<td>2.19(3)×10^{-7}</td>
</tr>
<tr>
<td>Fe(II)</td>
<td>0.000464 (3)</td>
<td>1890(20)</td>
<td>4.18(4)×10^{-7}</td>
</tr>
<tr>
<td>Pb(II)</td>
<td>0.000548(3)</td>
<td>687(6)</td>
<td>7.8(1)×10^{-7}</td>
</tr>
<tr>
<td>Fe(III)</td>
<td>0.000871 (2)</td>
<td>2340(60)</td>
<td>3.7(1)×10^{-7}</td>
</tr>
</tbody>
</table>
Chapter 7

Conclusion

This chapter includes a summary of the results on the chemical sensing platform, as well as a proposal for the future work.

7.1 Summary

Previously there has been an extensive study on a bis[3-(triethoxysilyl)propyl]tetrasulfide (BTESPTS) functionalized mesoporous silica (MPS) film, which has been shown to have an affinity for heavy metal ions, such as Pb(II). [34] The aim of this research was to develop a prototype heavy metal sensor based on SOI tandem ring resonators coated with S₄-PMS film. I characterized the sensor’s response to Pb(II) ions and Hg(II) ions, as well as several ions that are frequently present as interferences. XPS data also confirmed that the S₄-PMS film could adsorb Pb(II) and Hg(II).

To fully remove the metal ion from the film, 1 ppm Na₂EDTA solution (pH = 7 for most ions, pH = 5 for strongly bound ions like Hg(II), Fe(III), and Al(III)) was used to remove all the metal ions from the film. Strong acid solution (0.1 M HNO₃) also worked, but it eroded the film substantially. All MPS films in this research were removable from the coated SOI chips by immersing the chips in 0.1 M NaOH solution for an hour without destroying the delicate waveguides on the chips. While the MPS films would dissolve in basic solution, and to a lesser extent in strong acids, the films were stable in DI water and can endure hundreds of adsorption and desorption tests. However, the film degraded faster in tap water and much faster in seawater. The erosion rate in tap water and sea water were 5 times and 91 times faster than that in DI water. (-6.62(1)×10⁻⁸ RIU/s in tap water, -1.359(7)×10⁻⁸ RIU/s in DI water, and -1.233(4)×10⁻⁶RIU/s in seawater) The mechanism for these erosion processes is currently not well understood.

In this work, a functionalized ring resonator system was developed as the measurement platform, a scanning laser diode was used to continuously interrogate the sensor head, and a microfluidics device was developed as the liquid sample delivery system to make sure the liquid sample flow was steady and air
bubble free. Solution samples of Pb(II) and Hg(II), as well as other common ions in ground water, including Na(I), K(I), Mg(II), Ca(II), Fe(II), Zn(II), Cd(II), Fe(III), and Al(III), were flowed over the coating ring resonator so that the metal ions adsorbed into the film, changed the film refractive indices, and shifted the ring resonator resonance peaks to higher wavelength. Data analysis procedures and protocol based on Igor Pro™ were developed to extract the peak shifting information. The adsorption and desorption curves were recorded and analyzed. Similar curves were recorded on PMS coated ring resonator as control data sets.

These research results suggest that the tetraethyl orthosilicate mesoporous silica (PMS) films had one binding site to bind with all the metal ions tested, presumably the deprotonated silanol groups. The strength of the binding was closely related to the ions’ charge states, showing weak binding effects to single charged ions, like Na(I) and K(I), and strong binding effects to triply charge ions, like Fe(III) and Al(III). Other doubly charged ions fell in between. By comparison, the tetrasulfide-functionalized mesoporous silica (S₄-PMS) films, which were made by co-condensation between BTESPTS and TEOS, had an additional binding site that did not bind Na(I), K(I), Mg(II), Ca(II), Fe(II), and Zn(II), but preferentially bound to Cd(II), Pb(II), Hg(II), Fe(III), and Al(III). The trend was reflected approximately by the solubility of the corresponding metal sulfides. As a result, the selectivity of the S₄-PMS film was limited to those heavy metal ions and other metal ions that form insoluble sulfides. The distinction between those ions, e.g. Pb(II), Hg(II), Cd(II), but also Fe(III) and Al(III), is currently not possible unless the water sample is pretreated to remove all ions that interfere.

In addition to heavy metal sensing, this platform can be used to study ion or molecule adsorption, desorption, and diffusion processes on thin films, as long as the processes cause coating refractive index changes.

7.2 Future work

The sensing platform has been proven to be a useful and robust testing platform. The platform can be improved on several aspects, including coating optimization, data processing method, optical design, testing parameter optimization, etc.
7.2.1 Coating Optimization

The S₄-PMS coating used in this research lacked selectivity for a single species. Its sensitivity for Pb(II) and Hg(II) was not as low as is required to quantify the heavy metal concentration in drinking water by the Canadian drinking water standard, 10 ppb and 1 ppb, respectively. [55]. The coating can be optimized by increasing the ratio of BTESPTS to TEOS precursors, or by increasing the surface area, i.e. its porosity. Also, trimethylethoxysilane (TMES) can be used to cap silanol groups and make the tetrathiosulfide groups the only interaction sites with metal ions. Of course, the coating can contain other more selective functionalization groups to bind with heavy metal ions, such as crown thioethers, DNA, RNA, or proteins.

7.2.2 Data Processing Method

The data analysis method can be improved by moving from off-line analysis to online data analysis. Better data gathering and analysis system would show the coating refractive index in real time. In this way, researchers can see the refractive index change while the sample is flowing. A lot of time can be saved if researchers can know whether the adsorption or desorption process is complete, or whether the chip is properly cleaned before performing the test.

7.2.3 Optical Design

The current light coupling method is the “edge-on coupling” method. In this method, it is not only hard to align the fibre delivering the laser light with the silicon waveguide in the first place, but the method is also subject to vibration and alignment stage drifting, which means that the stages need to be adjusted manually every 5 - 20 minutes. During the alignment process, the light polarization has to be re-optimized to get the best ring resonator spectra. The platform would be easier to work with if the fibres were fused with the waveguide end on the edge of the chip. This would remove the alignment, vibration, and polarization issue. Ideally, the SOI chip can be packaged into a probe, like the commercial probe shown in Figure 7-1.
The current setup can only couple light in and out of one waveguide and probe one pair of tandem ring resonators at a time, although the chip has dozens of other ring resonators. If two or more tandem resonator systems - coated with different coatings - were interrogated simultaneously, this could further differentiate between analytes and increase the selectivity of the sensor. This design requires that either all tandem resonators are on the same bus waveguide and light is directed into a single photodetector, or that each tandem ring resonator is coupled to a different waveguide, and the transmitted light is detected by a multitude of photodetectors.

Currently, the lower limit of the scanning wavelength range is determined by the fact that the range must contain at least one sensing peak and one reference peak, with some “peak-free” region in between. A future design may employ shorter scan ranges that are separate for the sensing and reference peaks, i.e. the time spent scanning across the “peak-free” region of the spectrum could be reduced, and the sampling rate may be increased.

Figure 7-1 An example of Stratophase micro optical sensor packaging. From [56]
7.2.4 Testing Parameter Optimization

A systematic optimization study using different flow rates, different data acquisition rates, different testing times, and different Na$_2$EDTA concentrations would allow us determination of the best testing environment to save reagents and testing time.
References

1. Chen, W., Chemical detection and sensing using optical interferometry, in The Department of Chemistry. 2013, Queen's University: Master's Thesis.

115

