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Abstract 

Resource allocation in a database management system (DBMS) is a performance management 

process in which an autonomic DBMS makes resource allocation decisions based on properties 

like workload business importance. We propose the use of economic models in a DBMS to guide 

the resource allocation decisions. An economic model is described in terms of business trades and 

concepts, and it has been successfully applied in some computer system resource allocation 

problems. 

In this thesis, we present approaches that use economic models to allocate single and 

multiple DBMS resources, such as main memory buffer pool space and system CPU shares, to 

workloads running concurrently on a DBMS based on the workloads’ business importance 

policies. We first illustrate how economic models can be used to allocate single DBMS resources, 

namely system CPU shares, to competing workloads on a DBMS.  We then extend this approach 

to using economic models to simultaneously allocate multiple DBMS resources, namely buffer 

pool memory space and system CPU shares, to competing workloads on a DBMS based on the 

workload business importance policy in order to achieve their service level agreements. 

Experiments are conducted using IBM® DB2® databases to verify the effectiveness of our 

approach. 
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Chapter 1 

Introduction 

1.1 Motivation 

With the rapid development of information technology (IT) over the past 20 years, IT 

infrastructures, such as the Internet, computer systems, and software applications, have 

significantly accelerated the pace, reach, and agility of business [8]. The fast growing IT 

infrastructures, however, have also introduced a huge amount of complexity into today’s business 

and IT industry itself. The consequence of the growing complexity is the damage to an enterprise 

caused by more system downtime, higher costs, and inferior customer service [37].  Since the 

trend of IT infrastructures appears to be towards more complex, thus more difficult to manage 

systems, the complexity crisis is becoming the main obstacle to further progress in the IT industry 

[18]. 

 In particular, database management systems (DBMSs), as the core component of a 

computing system in many organizations, are often integrated with other computing systems. A 

DBMS may have hundreds of parameters which can be tuned for the system to perform 

optimally, and performance tuning on one large subsystem may lead to unanticipated effects on 

the entire system [18]. As computing systems are becoming increasingly complex, business 

organizations require more and more skilled IT professionals to install, configure, tune, and 

maintain their systems. It is estimated that one-third or one-half of a company’s total IT budget is 

spent on maintenance and development of existing enterprise computing systems [11]. In 

addition, the emerging trend to server consolidation and service-oriented architectures are making 

the management of DBMSs even more complicated. In order to minimize cost and maximize 

investment return, business organizations consolidate their databases onto one database server. 



 

 2 

This trend, for a database server, means that a single server needs to be able to simultaneously 

handle multiple workloads with diverse characteristics and dynamic resource demands while at 

the same time, satisfy the workloads’ service level agreements (SLAs). 

 An option to address this complexity issue is to apply IBM’s autonomic computing 

technology on the computing systems. Autonomic computing is a term used to describe a broad 

range of standards, architecture, products, services and tools that enable technology systems to be 

self-managing [17]. An autonomic computing system, in other words, can be simply described as 

a system that manages itself with the high-level objectives given by the system administrators. 

The goal of an autonomic computing system is to shift tasks such as system configuration, 

maintenance, and fault management from people to technology. An autonomic computing system 

is capable of taking over manually intensive IT operations, many of which are routine and 

repetitive [17]. One of the efforts towards self-managing computing systems involves automatic 

resource allocation in autonomic DBMSs to ensure that competing workloads running on the 

systems meet their performance requirements. Such requirements may be based on a business-

level workload management policy such as workload business importance policies. 

1.2 Problem 

As introduced above, with the emerging trend for enterprises to consolidate workloads onto a 

single database server, the management of the diverse variety of workloads running on a DBMS 

is becoming increasingly complex and costly. Workloads submitted by different applications, or 

from different business units, may have unique performance requirements, such as response time 

and throughput requirements, which are normally expressed in terms of SLAs that need to be 

strictly satisfied [20]. Workloads concurrently running on a database server inevitably compete 
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for shared system resources, such as CPU, main memory, and disk I/O. As a result, it is possible 

that the workloads may not acquire sufficient system resources and fail to meet their SLAs. 

To meet the performance requirements of database workloads, database administrators 

(DBAs) may need the workload management policies and DBMS system-level techniques to 

implement and satisfy these policies. Workload business importance policies, a type of workload 

management policies, apply business metrics to classify database workloads into multiple classes 

based on the workloads’ business importance. A workload business importance policy can be 

defined either by DBAs or by IT service providers. A workload may be considered important if it 

is generated by an organization’s CEO or if it is directly revenue producing. Less important 

workloads might be those pertaining to functions such as human resources or business report 

generation. It is a challenge for DBAs to tune DBMSs according to a given workload business 

importance policy as system-level metrics must be defined to measure customers’ expectations 

and the business-level importance policies must be translated into system-level tuning policies in 

order to impact these metrics. 

Autonomic computing suggests that DBMSs are capable of becoming self-configuring, 

self-tuning, self-protecting, and self-healing [18]. A key feature of autonomic DBMSs is policy-

driven management, which includes making resource allocation decisions based on properties 

such as workload business importance. This feature enables the high-level business policies to be 

automatically translated into low-level system resource tuning actions. In addition, the feedback 

loop of autonomic DBMSs verifies that workload SLAs are met and initiates system 

reconfiguration if the system fails to meet the SLAs. With autonomic DBMSs, system 

administrators may concern themselves only with the definition of the high-level business 

policies and let the system take care of the rest. 



 

 4 

Resource allocation, as a workload management technique, manages individual DBMS 

resources and assigns the resource shares to workloads based on business-level administrative 

objectives such as a workload business importance policy. With the allocated resources, the 

workloads can be managed to achieve their SLAs when they are concurrently running on one 

database server. We propose the use of economic models in a DBMS to implement this workload 

management technique. Economic models have been introduced and successfully applied in some 

computer system resource management problems [10][19][31][33]. The models incorporate an 

implicit sense of business trades and concepts, and therefore the workload business importance 

policies can be easily implemented by economic models and a DBMS can in turn be indirectly 

managed by these importance policies. 

To manage the shared resources in a DBMS and make system-level resource allocation 

decisions for workloads using an economic model, there are some critical issues inherently 

existing with the resource allocation problem. These issues include how to partition the individual 

shared DBMS resources among the competing workloads, how to determine the optimal amounts 

of each resource for each workload that will not only allow the individual workload to achieve its 

performance objectives, but also maximize overall system performance, and how to choose a  

reasonable total amount of resources to allocate, as well as how to predict the workload 

performance with a given resource allocation so that the model can verify that the workload SLAs 

will be met. 

1.3 Research Statement 

The objective of this research is to investigate resource allocation in DBMSs by applying 

autonomic computing technology and economic concepts to reduce resource management 

complexity. We introduce an approach that uses economic models to allocate DBMS resources 
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based on business-level management objectives such as workload business importance policies. A 

set of methods are proposed for using the economic model to allocate single and multiple DBMS 

resources for multiple classes of competing workloads. These methods include resource 

modeling, performance modeling, and a resource allocation method used for partitioning 

individual resources, predicting system performance and determining bottleneck resources. By 

applying the economic model, a DBMS is able to automatically translate a high-level workload 

business importance policy to the system-level resource tuning actions as a step towards a self-

managing system. 

This research makes several contributions to database workload management through 

automatically conducting resource allocations in a DBMS. The first contribution of the work is an 

investigation of the use of the resource allocation framework originally proposed by Boughton 

[7] for system CPU resource allocations. Boughton [7] tuned buffer pool memory resource 

allocations by using the resource allocation framework in an autonomic DBMS for multi-class 

workloads with unique performance requirements. In this study, we extend the framework by 

defining a method of CPU resource modeling and a CPU resource utility function for the resource 

allocation framework to allocate system CPU resources. 

The second contribution is the specification of a resource allocation framework that 

extends the functionality of single-resource allocations to the case of multiple-resource 

allocations for multiple workloads with unique performance requirements. The resource modeling 

methods are applied to partition the multiple resources, namely buffer pool memory space and 

system CPU shares, and resource allocation and performance modeling methods are proposed in 

the framework for the multiple-resource allocations. A multiple-resource utility function is 

constructed using the performance modeling techniques. 
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The third contribution of this work is the extension of the economic model simulator 

created by Boughton [7] to validate the resource allocation framework. We simulate a DBMS 

environment with several workloads of differing business importance on a single DB2® database 

server. The workloads compete for the server’s limited system resources. We consider the cases 

of single resource, namely CPU resources, and multiple resources, namely buffer pool memory 

space and system CPU shares respectively. The simulator suggests resource allocations for the 

workloads as produced by the economic model. The performances of the multi-class workloads 

are verified by running the workloads on the DB2 database server. 

1.4 Thesis Organization 

The remainder of the thesis is organized as follows. Chapter 2 discusses related work found in the 

literature, as well as a brief description of autonomic computing concepts, a discussion of 

proposed approaches of resource management in DBMSs, and a short review of economic models 

for computer system’s resource management. Chapter 3 explains our general framework of using 

economic models for resource allocation in a DBMS. Chapter 4 describes an approach that uses 

our resource allocation framework to allocate single DBMS resources, namely system CPU 

shares, to workloads running concurrently on a DBMS based on their business importance. A 

validation of the approach is then provided. Chapter 5 shows the use of the extended resource 

allocation framework to simultaneously allocate multiple DBMS resources, namely buffer pool 

memory space and system CPU shares, to workloads running concurrently on a DBMS. The 

validation of the resource allocation framework for multi-resource allocation is then presented. 

We conclude and suggest future work in Chapter 6. 
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Chapter 2 

Related Work 

 

Generally, resource allocation in an autonomic DBMS is a performance management process 

undertaken by the system to provide timely and correct allocations of limited system resources to 

workloads based on business-level administrative objectives to optimize workload and system-

wide performance [33]. Our study presents an approach that applies autonomic computing 

technology to automate resource allocation in DBMSs and to automatically translate the business-

level workload management objectives into the DBMS system-level resource tuning actions. Our 

approach is tightly related to two areas of research, namely autonomic computing systems and 

resource management in DBMSs, and employs a resource management model. In Section 2.1, we 

review the concepts and evolutionary processes of IBM’s autonomic computing. Resource 

management is a fundamental concept in computer system design and management, and a number 

of approaches have been proposed for resource management in DBMSs.  In Section 2.2, we 

discuss some proposed techniques of resource management that are specifically relevant to 

policy-based or goal-oriented workload management by controlling resource allocations in 

DBMSs. In Section 2.3, we review economic models and their application for resource allocation 

in a computer system. 

2.1 Autonomic Computing 

The concept of autonomic computing was first presented by Paul Horn, IBM Senior Vice 

President and Director of Research, in 2001 [11]. The autonomic computing initiative aims to 

provide the foundation for systems to manage themselves without direct human intervention in 

order to reduce the complexity of the computing environment and infrastructure. By choosing the 
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word autonomic, IBM makes an analogy with the human autonomic nervous system which 

controls activities, such as heartbeat, blood pressure and breathing that enable human body to 

self-regulate and adapt to changing conditions [18][11]. In particular, autonomic computing is 

necessary for realizing workload management technology through employing resource allocation 

in a DBMS as there is no way for DBAs to manually and consistently conduct resource 

allocations to workloads in order to efficiently manage the dynamic and diversified workloads. 

 An autonomic computing system, as a self-managing system, has four fundamental 

properties: self-configuring, self-optimizing, self-healing, and self-protecting [18]. Self-

configuring means computing systems are able to automatically configure components to adapt to 

dynamically changing environments. The functionality of the property allows the addition and 

removal of system components or resources without system service disruptions. Self-optimizing 

means that systems automatically monitor and control the resources to ensure optimal functioning 

with respect to the defined requirements. Self-healing means that systems are able to recognize 

and diagnose deviations from normal conditions and take action to normalize them. This property 

enables a computing system to proactively circumvent issues which could cause service 

disruptions. Self-Protecting means computing systems are able to proactively identify and protect 

from arbitrary attacks. This property enables a computing system to recognize and circumvent 

security threats, and facilitates the system to protect itself from physical harm, such as excessive 

heat or motion [17]. 

To implement autonomic computing, the industry must take an evolutionary approach 

and deliver improvements to current systems that will provide significant self-managing value to 

customers without requiring them to completely replace their current IT environments [11]. The 

path to autonomic computing is described in the five levels shown in Figure 1. These levels start 

at basic and continue through managed, predictive, adaptive and finally autonomic [12]. 
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Figure 1: Evolutionary Path of Autonomic Computing [13] 

 

At the basic level, each infrastructure element is manually managed by IT professionals 

who set it up, monitor and manage it, and eventually replace it. At the managed level, system 

management technologies can be used to collect and consolidate information from disparate 

systems and present it on a single console, thus reducing the time it takes for the administrator to 

collect and synthesize information. At the predictive level, since new technologies are introduced 

to provide correlation among several infrastructure elements, the system itself can begin to 
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recognize patterns, predict the optimal configuration and provide advice on what course of action 

the administrator should take. At the adaptive level, the systems themselves can automatically 

take action based on the information that is available to them and the knowledge of what is 

occurring in the system. Finally, at the autonomic level, the IT infrastructure operation is 

governed by business policies and objectives. Users interact with the autonomic technology to 

monitor the business processes, alter the objectives, or both [12]. 

Autonomic computing systems are self-managing systems, and they can regulate and 

maintain themselves without human intervention. Such systems are able to adapt to changing 

environments, such as changes in the workload or failures, in a way that preserves given 

operational goals (e.g., performance goals) [3]. Menasce et al [4][22][23][24] propose a set of 

techniques to design self-organizing and self-tuning computer systems. The techniques they 

proposed are based on the combined use of combinatorial search techniques and analytic queuing 

network models. In their work, Menasce at el defined the cost function to be optimized as a 

weighted average of the deviation of response time, throughput, and probability of rejection 

metrics relative to their service level agreements. Bennani at el [3] show that the techniques 

Menasce at el developed can be employed to solve resource allocation problems in an autonomic 

data center. The data center hosts several application environments (AEs) and has a fixed number 

of servers that are dynamically allocated to the various AEs in a way that maximizes a certain 

utility function. The utility functions described by Walsh et al [39] depend on performance 

metrics, such as throughput and response time, for different workload intensity levels and 

different number of servers allocated to an AE. Bennani at el [3] propose the use of predictive 

multi-class queuing network models to replace the table-driven approach proposed by Walsh et al 

[39]. The table-driven approach has the limitations of not being scalable with respect to the 

number of transaction classes in an application environment, not being scalable with respect to 
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the number of AEs, and not being scalable with respect to the number of resources and resource 

types. Moreover, building a table from experimental data is time consuming and has to be 

repeated if resources are replaced within the data center. 

Dynamic resource allocation provides the feature for an automatic computing system to 

self-optimize its resource usage and avoid the inefficiencies of over provisioning of resources. In 

order to dynamically allocate resources among multiple applications, it is necessary to accurately 

and automatically compute the value of resources for each application [34]. Tesauro et al [34] 

studied autonomic resource allocation among multiple applications based on optimizing the sum 

of utility for each application. In their work, a data center was used, which consisted of multiple, 

logically separated application environments, each providing a distinct application service using a 

dedicated, but dynamically allocated, pool of servers. Each environment had its own service-level 

utility function specifying the utility to the data center from the environment as a function of 

service metrics. Tesauro et al [34] compared two methodologies, a queuing-theoretic performance 

model and model-free reinforcement learning, for estimating the utility of resources. They 

evaluated the two methodologies empirically in the distributed prototype data center and 

highlighted tradeoffs between the two methods. 

2.2 Resource Management in DBMSs 

In this section, we discuss previous work from the literature on resource management and 

allocation in DBMSs for workloads with widely varying resource requirements and performance 

objectives. 

 Davison et al. [9] propose a framework for resource allocation in DBMSs based on 

concepts from microeconomics. The framework aims at reducing the response time of queries and 

improving resource utilization in a multi-user environment. The central element of the framework 
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is a resource broker that schedules queries and allocates resources among executing operators to 

achieve system-wide performance objectives. The guiding principle for brokering resources is 

profit maximization. By selling limited system resources to competing operators, the resource 

broker maximizes the profit and the system-wide performance objectives are therefore achieved. 

In their work, Davison et al. present a prototype broker that manages memory and disk bandwidth 

for a multi-user query workload. 

 Boughton et al. [6] present a framework for resource allocation based on the use of 

economic models. In this framework, a limited number of database buffer pool memory resources 

are allocated among competing workloads with different SLAs and levels of business importance. 

A utility function for buffer pool memory resources is introduced to determine the maximum bids 

that resource consumers are willing to provide for the shares of the resource in order to achieve 

their SLAs. The framework automatically translates high-level business workload importance 

policies to the low-level buffer pool tuning actions. 

 The frameworks of Davison and Boughton are both based on business concepts in order 

to reduce the complexity of resource allocation problems and to provide stability. In both 

frameworks, consumers are assigned wealth to reflect their performance objectives and resource 

brokers are guided by the principle of profit maximization, which in turn maximizes the system-

wide performance and achieves workload objectives. Davison et al. use an admission policy to 

control resource contention by scheduling new queries for execution and use an allocation policy 

to control a query’s bid for resources when the query is scheduled [9]. Boughton et al. use a high-

level business importance policy to determine the workloads’ wealth and the workloads have 

equal chances to bid for the shared resources. The amount of wealth assigned to a workload is 

based on the workload business importance level. Wealthy workloads, therefore, achieve better 

performance than poor workloads. 
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 Brown et al. [5] propose an algorithm to achieve a set of per-class response time goals for 

a multi-class workload through automatically adjusting DBMS multiprogramming levels (MPL) 

and memory allocations. They assume that the system is configured such that it is possible to 

satisfy the goals for all classes in steady state. Since it is difficult to predict response times as a 

function of MPL and memory, they avoid exhaustively searching the entire solution space to find 

optimal <mplc, memc> pairs for the workloads to meet response time goals by proposing 

heuristics and a feedback algorithm to search the <mplc, memc> pairs. In our study, we use a 

queuing network model [21] to predict the performance of a workload with a certain amount of 

resources, and apply a greedy algorithm to search for optimal resource pairs in the case of 

multiple-resource allocation. 

 Niu et al. [27] propose a framework for workload adaptation in a DBMS. The framework 

manages multiple-importance classes of queries to meet their performance goals through 

allocating DBMS resources. Their approach uses an adaptable admission control mechanism to 

ensure that multiple workloads with different importance levels meet their performance goals. 

The importance and performance goals of a workload are expressed by a utility function. 

 Schroeder et al. [32] present a similar framework as Niu et al. to meet a set of online 

transaction processing (OLTP) workload quality of service (QoS) targets. The framework has two 

main components, the scheduler and the MPL advisor. The core idea of the framework is to 

maintain an upper limit on the number of transactions executing simultaneously within the 

DBMS. In their framework, Schroeder et al. divide transactions into different classes based on 

their business importance, and obtain QoS targets and overall performance of the DBMS through 

choosing MPL levels. 



 

 14 

 The approaches of both Niu and Schroeder perform workload management in DBMSs 

based on the business importance policies and schedule queries outside the DBMS. They do not 

directly deal with resource allocations, and therefore, they do not require low-level resource 

management plans. To partition individual DBMS resources and make system-level resource 

allocation plans for competing workloads, more sophisticated resource allocation techniques are 

necessary. 

2.3 Economic Models for Resource Management 

Applying economic models to allocate resources in computer systems and networks has been 

studied for many years as economic models can provide interesting contributions to resource 

sharing algorithms. Economic models potentially reduce the resource allocation complexity by 

decentralizing the control of resources and partition large complex allocation problems into 

smaller and disjoint allocation problems. 

 In an economy, resource decentralization is generated by the economic model agents. 

Generally, there are two types of agents, suppliers and consumers, and they selfishly attempt to 

achieve their goals. A consumer attempts to optimize its individual performance by obtaining the 

resources it requires, and a supplier attempts to optimize its individual profit by allocating its 

individual resources to consumers. Most economic models introduce currency and pricing as the 

technique to coordinating the behavior of agents [10]. 

 An economy contains a set of resources. An agent may prefer some resource allocations 

over others, and the preferences are typically represented by utility functions. In economic 

models, there are two main ways to allocate resources among the competing agents. One of them 

is the exchange based economy and the other is the price based economy. In the exchange based 

economy, each agent is initially endowed with some amount of the resources. They exchange 
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resources until the marginal rate of substitution of the resources is the same for all the agents. In a 

price based system, the resources are based on the demand, supply, and the wealth in the 

economic system. Each agent computes the demand from the utility function and the budget 

constraint. Bidding and auctioning resources is a form of resource allocation based on prices [10]. 

In this study, we use the price based economy to coordinate the agents’ behaviors in an economic 

model since the utility functions required in the price based economic models are relatively easy 

to be defined and implemented. 

 There are many studies on using economic models in resource allocations. Stratford et al. 

[33] present an architecture based on an economic model of resource management to achieve the 

global (system) and local (application) performance optimizations on a computer system. In their 

approach, system applications are responsible for their own local optimization through 

negotiating resource allocations with resource managers. Stratford et al. present that by correctly 

setting up the local optimization problems, it should be possible to achieve global optimization as 

a side-effect of the local optimizations. The basic mechanism of their approach is the resource 

pricing. Resource managers attempt to maximize their revenues, which are generated by selling 

resource contracts to applications, and applications attempt to maximize their utility by 

purchasing and trading resource contracts. Applications are provided with credits from a user 

agent, renewable over a given time-scale. User agents are responsible for implementing the policy 

of a particular user of the system. In the architecture, Stratford et al. use dynamic pricing as a 

congestion feedback mechanism to enable applications to make system policy controlled 

adaptation decisions. 

 Stonebraker et al. [31] propose an economic paradigm to solve the complex query 

execution and storage management issues in the Mariposa database system at Berkeley. There are 

three kinds of entities in the economic system, namely clients, brokers, and servers. Clients 
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represent queries submitted by user applications at a client site. A query starts with a budget 

which pays for executing the query. The broker’s job is to get the query performed. The goal of a 

broker is to expend the client’s budget to balance resource usage with query response time. 

Mariposa objects can be stored over a number of autonomous sites, thus each server site responds 

to queries issued by a broker for data or metadata. A server site attempts to maximize income by 

buying and selling storage objects, and processing queries for locally stored objects. In the 

Mariposa database system, brokers manage the bidding and query execution on behalf of clients, 

and clients direct brokers using budgets. Mariposa uses an economic bidding process to regulate 

name service, storage management, and query execution. 

 Kurose et al. [19] consider the problem of optimal file (data objects) allocation in a 

complex distributed computer system. In the approach, they present decentralized algorithms to 

allocate file resources among agents (computer systems). The algorithms are based on the 

economic models in a cooperative and non-competitive manner [10]. The file access optimization 

is to minimize the overall communication cost required to satisfy file accesses and to minimize 

the average time delay associated with file access. They define a utility function to reflect the 

utility of the file allocation in the distributed system. In their approach, a global utility function is 

used for all the users (N nodes). Each user is given an initial allocation, and they then compute 

the optimal allocation by solving the global optimization problem by utilizing the utility function. 

The process is done by trading appropriate amounts of resources iteratively (marginal rate of 

substitution of resources) among the users themselves until they reach a point where the marginal 

rate of substitution of resources is equal, and the allocation at this point is optimal. 

 Defining a utility function is a key procedure in designing an economic based computer 

system as the utility function is the fundamental mechanism in the resource allocation processes. 
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In our study, we define utility functions in our resource allocation framework based on our 

proposed performance models. 
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Chapter 3 

Resource Allocation Framework 

 

As described earlier, resource allocation in an autonomic DBMS is a process of automatically 

optimizing resource assignment among competing workloads to achieve the workloads’ 

performance objectives and economic concepts can be used in the resource allocation process in 

DBMSs in order to map a high-level business policy to system-level resource tuning actions to 

potentially reduce the operational complexity.  In previous work, our research group proposed a 

resource allocation framework that uses an economic model to implement resource allocation in 

an autonomic DBMS [7]. The work focused on managing a single resource, namely buffer pool 

memory space. The experimental results indicated that the resource allocation framework could 

successfully make buffer pool memory allocation plans for competing database workloads to 

meet their performance requirements. 

 To further investigate this resource allocation approach in DBMSs, in this research, we 

first study the application of system CPU resource allocations and then extend the single-resource 

allocation study to simultaneously allocate multiple resources, namely buffer pool memory space 

and system CPU shares, in an autonomic DBMS. The economic model, as shown in Figure 2, 

consists of a set of shared resources, resource brokers, a trade mechanism, and resource 

consumers. It represents a price based economy with a market mechanism of auctioning and 

bidding for the shared resources. 
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Figure 2: Economic Model Framework [7] 

3.1 Shared Resources 

Theoretically, an economic model can manage an arbitrary number of shared resources for 

allocation. We study the allocations of two DBMS shared resources, namely buffer pool memory 

space and system CPU shares. We choose these two resources since they are key factors in 

database performance management. 
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The buffer pool of a database system is an area of main memory in which data and index 

pages are cached to reduce disk access. The purpose of the buffer pool is to improve performance 

of a database system by attempting to reduce the number of physical reads from its I/O system. 

For many workloads, a larger buffer pool size means that a database can achieve better 

performance, and a smaller buffer pool size, on the other hand, means poorer system 

performance. System CPU share is another main resource that contributes significantly to 

database system performance. A request in a database system needs a certain amount of CPU 

service to complete its work. If a database system obtains high CPU utilization, then the database 

can process more requests at a time and therefore achieves better performance. 

 In this study, we consider the case where a DBMS concurrently runs several workloads 

which are classified into multiple business-level importance classes and have unique performance 

requirements. The workloads compete for these two shared resources and the economic model is 

applied to make the resource allocation plans and determine appropriate allocations. 

3.2 Resource Brokers and the Trade Mechanism 

Resource brokers allocate resources to consumer agents that represent the workloads via an 

auctioning and bidding based economy. Each broker owns a type of resource and charges 

consumer agents for the use of the resources. Consumer agents are assigned some amount of 

wealth to bid for the shared resources. The amount of wealth reflects a workload’s business 

importance. 

 The principle behind the auctioning and bidding mechanism is that the resource brokers 

and consumer agents selfishly attempt to achieve their goals [10]. Resource brokers attempt to 

maximize their profits by conducting auctions to sell the resources they own and take the highest 

bids submitted by consumer agents. Consumer agents, on the other hand, attempt to maximize 
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their workloads’ performance by submitting the maximum bids they can afford to win auctions 

and therefore gather more resources. With resource brokers maximizing the profits, the optimal 

resource access among competing workloads and the SLAs can be maximally achieved. 

 Several types of auctions, such as English auction, Dutch auction, Hybrid auction, and 

Sealed-Bid auction, can be used in the auctioning and bidding based economy. An English 

auction is where the price of the resource gradually increases with the bidding. The highest bidder 

obtains the resource. A Dutch auction means prices are gradually lowered by the seller until one 

of the buyers claims the resource. In a Hybrid auction, the asking price of a resource is increased 

if a bid is submitted, and decreased if no bid is submitted. In a Sealed-Bid auction, sealed bids are 

submitted by the agents and the highest bid is given access to the resource [10]. 

 A Sealed-Bid auction is chosen as the trade mechanism in our economic model since it is 

more efficient and easily implemented than other auctions. In Sealed-Bid auctions, consumer 

agents submit bids to resource brokers and are not aware of the amounts bid by others. Resource 

brokers collect the sealed bids submitted by consumer agents, select the highest bid as the winner 

and allocate the resources to the consumer agent. To maximize profits, resource brokers conduct 

auctions until there are no remaining resources, or until there are no further bids, indicating that 

the consumer agents have depleted their wealth, or their performance requirements have been 

satisfied using the current allocation. The price of a resource share in an auction is set by the 

highest bidder among the consumer agents. Resource prices, therefore, might vary through the 

process of all the auctions. 

3.3 Consumer Agents 

A consumer agent represents a workload running on the DBMS and competes for the shared 

resources with other consumer agents. Each consumer agent executes queries in its workload and 
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strives to meet the workload performance requirements. We consider several competing 

workloads as described earlier, thus there are the same number of consumer agents and workloads 

in the economic model. A consumer agent typically consists of a workload, a certain amount of 

wealth, and a resource utility function. The interactions between the consumer agents and the 

resource brokers are through the Sealed-Bid auctions. 

3.3.1 Amount of Wealth 

The workload of a consumer agent is conceptually divided into a series of resource allocation 

intervals each with approximately an equal number of requests [6]. By using the resource 

allocation intervals, an economic model could easily adapt to competing workloads’ dynamic 

resource demands, providing more opportunity for competitions for appropriate resource 

allocations. At the beginning of each interval, all the resources are returned to resource brokers, 

and the consumer agent is assigned some amount of wealth. This initial amount of wealth is 

determined by two factors, namely the workload business importance level, and the cost of 

running the workload for the resource allocation interval.  In our case, we use the total number of 

I/O operations of the workload queries in the current resource allocation interval to represent the 

cost. If a consumer agent represents a workload W with K queries in a resource allocation 

interval, then the wealth assigned to the consumer agent at the beginning of the resource 

allocation interval is calculated using equation (3.1): 

 ( ) ( )∑ =
∗=

K

i iW qtimpWWealth
1
cos                                                                             (3.1) 

where, cost(qi) is the estimated cost of the i-th query of the workload W in the current resource 

allocation interval, and impw is the workload business importance level called the importance 

multiplier which is defined in Section 3.4. We use batch workloads in our studies, where all 



 

 23 

queries are known in advance, so we are able to estimate each workload’s query I/O operations 

using the DB2 Explain utility [15]. 

 Workload business importance levels can significantly affect the amount of wealth of 

consumer agents if the costs of the competing workloads are similar. A consumer agent might 

have much more wealth than others if the workload that it represents has the highest business 

importance, while a consumer agent might have much less wealth if its workload has less 

business importance. A wealthy consumer agent is more likely to win resource auctions, and 

therefore, its workload will be allocated sufficient resources to achieve high performance. The 

less important workloads, associated with less wealthy consumer agents, on the other hand, might 

experience low performance in the resource constrained situation. In a resource allocation 

interval, if a consumer agent wins an auction and gains the resource shares, then it will lose 

wealth, and therefore it will be less likely to win resource shares on the next bid. This ensures that 

all consumer agents can have a chance to win auctions [6]. 

3.3.2 Utility Function 

The utility function [39] of a consumer agent, in the economic model, is a monotonically non-

decreasing function, and it maps performance achieved by a workload with certain amount of 

allocated resources into a real number u [29]. There is no single way to define a utility function in 

the model. The guidelines for choosing or constructing a utility function are the following 

[29][26]: 

• The value of u should increase as the performance experienced by a workload increases, 

and decreases otherwise. 
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• The amount of utility increase should be getting larger as the performance of a workload 

increases quickly, while, the amount of utility increase should be getting smaller as the 

performance of a workload increases slowly. 

• The return value, u, of a utility function should be determined by the amount of allocated 

resources of a workload, and the value of [ ]1,,0 L∈u . 

If the performance of a workload is high, then the utility of resources allocated to the workload is 

close to 1, while, if performance of the workload is low, then the utility of resources allocated to 

the workload is close to 0. The resource utility function helps consumer agents to determine the 

workloads’ resource preferences and their maximum bidding values. 

3.3.3 Maximum Bid 

The maximum bidding value of a consumer agent is determined by its wealth and marginal 

utility, that is, the difference in utility between two consecutive resource allocations [6]. If an 

economic model allocates M shared resources, and a consumer agent in the model, representing 

the workload W, has the allocated resources { }mxxxx ,,, 21 L
r
= , and it is to bid on 

{ }myyyy ,,, 21 L
r
=  additional resources, then the marginal utility can be calculated with 

equation (3.2) [6]: 

( ) ( ) ( ) ( )( ) ( )mmm xxxUyxyxyxUWMgl ,,,,,, 212211 LL −+++=                     (3.2) 

where, ( )mxxxU ,,, 21 L  is the resource utility function that is defined in the cases of single-

resource and multiple-resource allocations respectively. The maximum bid of the consumer agent 

for the additional resources, { }myyyy ,,, 21 L
r
= , is determined by: 
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( ) ( ) ( )WWealthWMglWBid ∗=                                                                                  (3.3) 

where, Mgl(W) can be calculated with equation (3.2), and Wealth(W) is determined by equation 

(3.1). 

 As the utility function is non-decreasing, and its return value is in the real number range 

[ ]1,,0 L , based on the equation (3.2), the value of a marginal utility is also in range [ ]1,,0 L . 

The marginal utility reflects potential performance improvement of a workload. For some 

resources, if the calculated marginal utility of a consumer agent is close to 1, then it means these 

additional resources can significantly benefit the consumer agent’s workload performance, while, 

if the calculated marginal utility is close to 0, then the additional resources will not help the 

workload’s performance. By examining the marginal utility value, a consumer agent can 

determine the preferred resources for its workload. The maximum bid, as shown in equation (3.3), 

is the marginal utility multiplied by current wealth of a consumer agent, and says that a consumer 

agent is willing to spend the marginal-utility percentage of its current wealth as a sealed-bid to 

purchase the resources. 

3.4 Workload Importance and Importance Multiplier 

Workloads running concurrently on a database server are diverse and complex. They may have 

unique performance requirements and dynamic resource demands. As an example, a transactional 

OLTP workload may have a high throughput requirement, while a decision support system (DSS) 

workload may have a short response time goal. By applying a business importance policy, these 

workloads can be classified into different important classes. 

3.4.1 Workload Importance 

Normally, there are two interpretations to express that one workload is more important than 

another, namely absolute importance and relative importance. Absolute importance means that 
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competing workloads are assigned priorities according to their business importance levels [1][32]. 

The resource requirements of high priority workloads should be satisfied before others, thus an 

important workload may be allocated all resources and less important workloads must wait for the 

resources to be released. Relative importance is that all workloads simultaneously share the 

limited system resources, and the amount of resources allocated to one workload is commensurate 

with the workload’s importance relative to others [26]. 

3.4.2 Importance Multiplier 

We use the concept of an importance multiplier [7] to capture the differences in the relative 

importance of competing workloads. For example, we may wish to classify multiple workloads 

into three business importance classes, which can be labeled as high importance, normal 

importance, and best effort. We may assign a value of 1 to the importance multiplier of the best 

effort class and then express the degree of importance of the remaining classes relative to that 

value. For instance, if the high importance class has its importance multiplier as 10, then it is 10 

times more important than the best effort class. If the normal importance class has its importance 

multiplier as 5 then the class is 5 times more important than the best effort class, and in turn, the 

high importance class is 2 times more important than the normal importance class. 

 As described in equation (3.1), a workload importance multiplier can significantly affect 

the amount of wealth that is assigned to a consumer agent, and the wealth, then, determines the 

amount of resources that could be assigned to the consumer agent. By using the importance 

multipliers, an economic model enforces competing workloads’ degree of importance in a 

resource allocation process. In our approach, the domain of the importance multipliers is positive 

integer, thus the amount of wealth assigned to a consumer agent can be very large. However, 

since we use the relative importance to describe a workload business importance level and assign 
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the value of 1 to the importance multiplier of the best effort class, and the business importance 

levels of competing workloads are also defined in a given business importance policy, as a result, 

the amount of wealth assigned to a consumer agent is reasonable. 

3.5 Summary 

In this chapter, we present a general framework of an economic model for resource allocation in a 

DBMS. It consists of four components, namely a set of shared resources, resource brokers, a trade 

mechanism, and consumer agents. Resource brokers conduct auctions to sell the shared resources, 

and consumer agents submit bids to buy the shared resources from the resource brokers via an 

auctioning and biding based trade mechanism. 

 In the economic model, a consumer agent represents a workload to bid for the shared 

resources in resource auctions. A consumer agent typically consists of a workload, a certain 

amount of wealth, and a utility function. The wealth of a consumer agent is determined by its 

workload cost and the workload business importance level. Based on the utility function, a 

consumer agent can calculate the marginal utility of the resource shares for bidding. The bidding 

value of a consumer agent is determined by the marginal utility and the amount of wealth that the 

consumer agent currently has. The wealthy consumer agents are able to win more resource 

auctions than the poor agents, and, therefore, the workloads of wealthy consumer agents can 

achieve better performance than the workloads of poor ones. 

 In Chapter 4, we illustrate the use of the economic model to allocate system CPU 

resources to workloads in multiple importance classes, and in Chapter 5, we extend our resource 

allocation framework using the economic model to allocate multiple resources in a DBMS. 
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Chapter 4 

Allocating CPU Resources 

 

The economic model, as described in Chapter 3, directly deals with resource allocations for 

competing database workloads based on their business-level importance policies. One application 

of using the model to allocate resources is buffer pool memory space management in an 

autonomic DBMS [7]. To manage a DBMS resource using the economic model, the resource 

modeling methods and the resource utility function must first be defined in the model as they are 

key mechanisms in the resource allocation process. Resource modeling provides methods to 

partition the shared resource among competing workloads and to determine the reasonable total 

amount of the resource for allocation. In our work, we determine a reasonable total amount of a 

resource by selecting the minimum amount of the resource where maximum system performance 

can be achieved. A utility function maps usefulness of resources to performance of a workload 

achieved, so it helps consumer agents to determine their maximum bidding values with respect to 

the workload potential performance improvement and the workload business importance levels. 

Different DBMS resources could have different modeling methods and utility functions since the 

resource characteristics are different. 

 In this chapter, we demonstrate the use of the economic model to allocate system CPU 

resources to competing database workloads in order to achieve the workload performance 

objectives, where the competing workloads are classified into different business importance 

classes and have unique performance objectives. The economic model for CPU resource 

allocation shown in Figure 3 consists of system CPU shares, a CPU resource broker, and 

consumer agents. The consumer agents represent competing workloads running on a DBMS, 



 

 29 

which are in different business importance classes, namely high importance, normal importance 

and best effort, as described in Section 3.4. The CPU broker conducts auctions to sell the CPU 

resources, and the consumer agents bid for the resource shares. The total amount of CPU 

resources for allocation in the economic model is determined by the CPU resource modeling 

method and the CPU resource utility function is defined in the consumer agents. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Economic Model for CPU Resource Allocation 
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The validation of our approach is presented at the end of this chapter. We extend the 

economic model simulator created by Boughton [7] to simulate CPU resource allocation 

processes and run the database workloads with the allocated CPU resources on a DB2 DBMS to 

verify that their performances match a given business importance policy. 

4.1 CPU Resource Model 

As it is not sufficient to simply assign different OS priorities to competing workloads based on 

their business importance, as described in Section 3.4, we use the relative importance to capture 

differences among competing workloads in our resource allocation framework. In a resource 

allocation process, we assume shared DBMS resources could be partitioned, and the resource 

shares could be directly assigned to individual competing workloads, and hence the database 

workloads use the assigned resource shares to achieve their performance objectives at the same 

time. 

4.1.1 CPU Resource Partition 

Given the limitations of current operating systems, CPU cycles cannot be directly assigned to a 

workload. Instead, we partition system CPU resources through controlling the number of database 

agents that are available to service requests on the database server. Database agents, in terms of 

IBM’s definition in DB2 databases, can be simply described as processes, or threads, of a 

database manager. They facilitate communication between a database manager and clients and 

local applications, and they do the work that clients and local applications request in the database 

manager instance. In UNIX® environments, database agents run as processes, while, in Intel-

based operating systems such as Windows®, the agents run as threads [14][15]. 

In a DB2 database server, the DBMS can be configured such that one client has one 

active database agent to coordinate its work, and therefore the number of database agents 
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available determines the number of requests of a database workload that can be admitted into the 

system at a time. A greater number of database agents result in more requests being processed at a 

time and higher system CPU utilization achieved. 

 

 

 

 

 

 

 

 

Figure 4: CPU Utilization versus Number of Database Agents 

 

We assume that the more agents allocated to service requests for a particular database 
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relationship between the number of database agents and system CPU utilization for a workload. 

As shown in Figure 4, the more database agents allocated to serve requests for a particular 

workload, the more system CPU shares this workload receives. To ensure that the CPU utilization 

responds to increases in the number of database agents used in the system, we configured the 

database server such that CPU was the bottleneck resource. Each data point present in Figure 4 is 

the average over 5 runs with a 90% confidence level and ≤10% confidence intervals [25]. 

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

The Number of Database Agents

C
PU

 U
til

iz
at

io
n



 

 32 

4.1.2 Total Amount of CPU Resources 

Based on Figure 4, we notice that the system CPU utilization increases with the increase in the 

number of database agents used in the system. This trend is basically linear until we reach 25 

database agents, at which the performance begins to level off, the system becomes saturated, and 

the database agents begin to interfere with each other. The increase in the CPU utilization after 

this point is more likely due to the additional CPU cycles required to maintain the large number 

of database agents running in the system. 

Based on our experimental results, we chose 25 database agents as the maximum number 

available in the resource allocation framework for allocation in our experiments. By using 25 

database agents, a workload can receive a significant improvement in its CPU utilization when it 

is assigned one additional database agent, and the database system is able to obtain the highest 

CPU utilization. The total amount of system CPU resources for allocation is set as a parameter in 

the economic model, so our approach can adapt to different database sever configurations. 

4.2 CPU Resource Utility Function 

We define the CPU resource utility function based on a performance model. The model estimates 

system performance of a DBMS with concurrently running workloads. In our experiments, 

several OLTP workloads are used to compete for the CPU resources on a DB2 DBMS. System 

throughput is used to measure the DBMS performance, where throughput is the number of 

transactions completed per unit time [38], and a transaction is one execution of a client 

application in the DBMS [30]. 

4.2.1 System Throughput Estimation 

Queueing Network Models (QNMs) are analytical performance models that can be used to 

predict the throughput, utilization, and latency of a computer system and its components (see 
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Appendix A for details). QNMs represent a computer system as a set of service centers that 

process customers (also known as transactions, jobs, or arrivals). Service centers can be any 

active resource such as a CPU, disk or network link [21][38]. 

We use QNMs to model the DB2 DBMS used in the experiments and to predict the 

system throughput when running OLTP workloads under different configurations. As we focus 

on system CPU resource management in this study, our DB2 QNM is simply a single service 

center representing the system CPU resources. The throughput of the DBMS can be therefore 

estimated by applying the utilization law [21]: 

DemandnUtilizatioThroughput =                                                                         (4.1) 

where Utilization is the percentage of time that the CPU is busy serving requests in the database 

system, and Demand is the average CPU service time of transactions in the workloads. 

4.2.2 DB2 QNM Parameterization 

To parameterize the DB2 QNM with respect to specific workloads, we must determine the 

average service demand of transactions in the workloads from the CPU service center, and define 

the relationship between CPU utilization and the number of database agents used in the system. In 

our experiments, we use the OLTP workloads from the TPC-C benchmark [36] (see Appendix B 

for details). For a specific database system and a specific workload, the average CPU service 

demand of a transaction is constant and is independent of the number of transactions concurrently 

existing in the system. By monitoring the CPU usage of transactions with varying numbers of 

database agents used in the system, we experimentally obtained CPU service demand values with 

using the equation (4.2). 

( ) CTUDemandCPU ∗=                                                                                           (4.2) 
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where U is the CPU utilization, T is the total workload execution time, and C is the number of 

completed transactions in the experiment. For TPC-C workload transactions with our specific 

experimental environments described in Section 4.3, the calculated average CPU service demand 

is 0.0181 (seconds/transaction). Figure 5 shows the calculated average CPU service demand value 

as compared to actual obtained values. All numbers represent averages over 5 runs, and a 90% 

confidence level with ≤10% confidence intervals [25] is used for each data point. 

 

 

 

 

 

 

 

 

 

Figure 5: Validation of CPU Service Demand 
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( ) ( ) 100962.19744.2 +∗= NNnUtilizatio CPU                                                       (4.3) 

where N is the number of database agents, N œ [1, …, 25].  For N > 25, the CPU is fully utilized 

and reaches its maximum utilization. With the DB2 QNM parameterized, the system throughput 

can be estimated by using equation (4.1) for a standard OLTP workload running on the DB2 

DBMS given a fixed amount of system CPU resources. 

 Figure 6 shows values obtained by equation (4.1) compared to actual throughput values. 

Since linear regression is applied to predict CPU utilization defined in equation (4.3), there is a 

discrepancy between the estimate and actual throughput values shown in Figure 6. Instead of 

accurately estimating particular throughput values, what we need in this study is to accurately 

predict system performance trend with the changes in CPU resources. Therefore, the validation is 

acceptable, and the performance model can be used in the following experiments. 

 

 

 

 

 

 

 

 

 

Figure 6: Validation of DB2 QNM 

0

5

10

15

20

25

30

35

40

45

50

55

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

The Number of Database Agents

Tr
an

sa
ct

io
ns

 / 
se

co
nd

Actual Estimate



 

 36 

4.2.3 Normalized Throughput 

Following the guidelines of defining utility functions described in Section 3.3.2, we define the 

CPU resource utility function by normalizing the estimated throughput with respect to the 

maximum throughput that the workload could achieve when all CPU resources are allocated to it. 

The utility function is given by: 

 ( ) ( )( ) MaxCPUCPUCPU XSNUNUtility =                                                                   (4.4) 

where UCPU(N) is the CPU utilization function defined by equation (4.3), SCPU is the average CPU 

service demand of transactions in the workloads as shown in Section 4.2.2 and XMax is the 

maximum throughput achieved by the workload when assigned all CPU resources. A graph of 

this utility function versus the number of database agents is shown in Figure 7.  

 

 

 

 

 

 

 

 

 

Figure 7: Utility Function for System CPU Resources 
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As described earlier, the CPU is the bottleneck resource in our database server, so the 

DBMS is saturated when the CPU is fully utilized.  At this point, the system throughput remains 

constant even when more database agents are allocated.  Since all of our experimental workloads 

are of the same type, the same utility function can be applied for all the workloads. 

4.3 Experimental Validation 

We extend the simulator of the economic model created by Boughton [7] to provide an 

experimental environment in which to validate the approaches proposed in the resource allocation 

framework for the CPU resource allocation problem. The validation of the approach addresses 

two main issues: 

• Does the resource allocation framework generate the CPU resource allocations for 

competing workloads on a DBMS so that the resource allocations match the database 

workload business importance policies? 

• Are the allocations resulting from the auctions sufficient for the competing workloads to 

achieve performances that match the workloads’ business importance levels? 

4.3.1 Experimental Environment 

We apply the economic model to a single DB2 instance with an identical database for each of the 

competing workloads from different importance classes. Each database is configured with two 

buffer pools where one buffer pool holds data pages and the other buffer pool holds index pages. 

The buffer pools sizes are experimentally determined to be 168 MB each in order to ensure that 

the CPU is the bottleneck resource and determines the database throughput. Each database has 

one workload running on it, thus we can control the CPU shares that each workload receives by 

controlling the number of agents assigned to the database. We use three standard OLTP 

workloads in our experiments, so the economic model allocates system CPU resources across 
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three identical databases based on the given workload business importance policies. We use one 

database agent as the allocation unit of CPU resource in this study as this granularity gives a 

reasonable workload performance increment and makes the resource allocation efficient. 

All experiments are conducted with DB2 Universal Database Version 8.2 [15] running on 

an IBM xSeries® 240 PC server with the Windows XP operating system.  The database server is 

equipped with two 1 GHz Pentium 3 processors, 2 GB of RAM and an array of 11 disks. To 

ensure that the CPU is the throughput-limiting resource, and to eliminate the need to account for 

CPU parallelism in the DB2 QNM introduced in Section 4.2.1, we configure the system with one 

processor available. We use the Windows XP operating system’s performance monitor to collect 

CPU utilization data. 

The database and workloads are taken from the OLTP TPC-C benchmark [36].  The size 

of each database is 10GB. The three workloads are TPCC-like OLTP batch workloads stored in 

three script files which are the same files used for buffer pool memory space management studies 

[7]. The workloads send transactions to the DBMS with zero think time during their run. Each 

workload consists of 120,000 requests based on the 5 different types of the transactions of TPC-C 

benchmark [36]. A workload is divided into 12 resource allocation intervals. The start of each 

interval provides a checkpoint at which a resource allocation process takes place to reallocate 

resources to workloads based on their current importance levels and wealth. 

The simulator is written in JavaTM (see Appendix C for UML class diagram) and the 

workload script files are used as the simulator input. The output of the simulator is the plan of 

CPU resource allocations, that is, a list of the number of database agents for the workloads at 

each of their checkpoints. According to the output, the number of database agent configuration 

commands is inserted into the workload script files at the checkpoints, allowing for a database to 
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dynamically reconfigure during a run. Before each run of the workloads, the databases are 

restored to their initial states. The normalized throughput, as defined in Section 4.2.3, is taken to 

measure the workloads’ performance. Each experiment was run five times, and the average of the 

five runs is reported. 

4.3.2 CPU Resource Allocations 

A set of experiments were conducted to determine whether our approach generates CPU resource 

allocations which match a given workload business importance policy. The workloads are 

assigned one of three different importance classes, namely the high importance class, the normal 

importance class, and the best effort class, as described earlier.  We experimented with three 

different sets of importance multipliers to validate the economic model. An importance multiplier 

set represents the importance multiplier values of the three importance classes in order of {best 

effort, normal importance, high importance}. The three sets used were {1, 1, 1}, {1, 5, 6}, and {1, 

5, 10}. These configurations were designed to examine how CPU resource allocation changes 

with the importance multipliers. 

Figure 8 shows the database agent allocations produced by the economic model using the 

three workload business importance multiplier sets.  The workload importance multiplier set {1, 

1, 1} represents the case where the three competing workloads are from three different business 

importance classes of equal importance. In this case, the three workloads are allocated 

approximately the same amount of CPU resources as shown in Figures 8.  Using the importance 

multiplier set {1, 5, 6}, the high importance and the normal importance classes are much more 

important than best effort class, and the high importance class is also slightly more important than 

the normal importance class. When the economic model is used to allocate resources in this case, 

the high importance and normal importance workloads are allocated significantly more resources 
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than the best effort workload, while the high importance workload is allocated slightly more 

resources than the normal importance workload. The set {1, 5, 10} represents the case where the 

high importance class is much more important than the normal importance class, and the normal 

importance class is much more important than the best effort class. In this case, the high 

importance workload is allocated more resources than the normal important workload, and the 

normal importance workload wins significantly more resources than the best effort workload. 

 

 

 

 

 

 

 

 

 

 

Figure 8: CPU Resource Allocations for Different Importance Multiplier Sets 

 

We conclude that CPU resource allocations generated by the economic model for 

competing workloads match the workload business importance policies with more important 
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4.3.3 Workload Performance 

A set of experiments were conducted to determine whether the performance achieved by the 

workloads with resource allocations generated by the economic model match the business 

importance policy. The workload importance multiplier sets used in these experiments are the 

same as the sets used in the experiments shown in Section 4.3.2. We can therefore observe the 

achieved performance of the workloads with the allocated resources obtained in the first set of 

experiments. The workloads were run on DB2 using the resource allocations suggested by the 

simulator. The workloads’ normalized throughputs are shown in Figure 9. 

 

 

 

 

 

 

 

 

 

 

Figure 9: Normalized Throughput for Different Importance Multiplier Sets 
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In Figure 9 we observe that the throughput of the workloads match the given business 

importance policies. When the workloads had the same business importance, namely applying 

importance multiplier set {1, 1, 1} on the economic model, the workloads achieve a similar 

normalized throughput. When the workloads are of different business importance, namely 

applying multiplier sets {1, 5, 6} and {1, 5, 10} on the model respectively, then the important 

workloads achieve higher performance than the less important workloads. The trend shows that 

the more important a workload is, the more CPU resources it receives and hence, the workload 

performance is greater. 

Based on the results, we conclude that using the economic model for CPU resource 

allocation is successful in obtaining workload performance that matches the given workload 

business importance policies. 

4.4 Summary 

In this chapter, we demonstrate an approach that uses an economic model to allocate system CPU 

resources for competing workloads on a DBMS where the database workloads are from multiple 

business importance classes with unique performance objectives. We propose a CPU resource 

modeling method, through controlling the number of database agents used in a DBMS, to 

partition system CPU resources. By using the CPU resource modeling method, we experimentally 

determine the reasonable total amount of CPU resources for allocations in the economic model. 

In order to define the CPU resource utility function, we apply a QNM on our DB2 DBMS to 

predict the system performance. The DB2 QNM is built as a simple application of QNMs with 

single CPU service center, and the utilization law is applied on the DB2 QNM to estimate the 

system performance for a workload running on it with certain amount of allocated CPU 

resources.  
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We implement the economic model as a simulator to validate the approach for CPU 

resource allocation. In the experiments, the TPC-C benchmark workloads are used to represent 

competing workloads running on a DB2 DBMS. We use the simulator to simulate the CPU 

resource allocation processes and run the workloads on the DB2 database server to verify their 

performance. Normalized throughput is taken as a performance metric to measure the workload 

performance. The experimental results show that with using the economic model, the system 

CPU resource allocations matches the given workload business importance policy, and the 

workloads’ performance with the allocated CPU resources matches their business importance 

levels. 

Through showing the application of using economic models to allocate CPU resources 

and the previous application of utilizing the economic models to manage buffer pool memory 

space [7], we have demonstrated that economic models can be successfully applied on single 

resource allocations in a DBMS. In Chapter 5, we illustrate that the economic model can be 

extended to manage multiple resources simultaneously, namely buffer pool memory space and 

CPU resources in a DBMS. 
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Chapter 5 

Allocating Multiple Resources 

 

As illustrated earlier in our resource allocation studies, economic models have been successfully 

used to provide timely and sufficient allocations of single critical DBMS resources to competing 

workloads based on the workload business importance policies. To further investigate the use of 

the economic model to manage shared DBMS resources, we extend our approach to the case of 

simultaneously allocating multiple resources in a DBMS. In order to use an economic model in a 

DBMS to make system-level multiple resource allocation plans for competing workloads, there 

are several issues that must first be addressed in this resource management study. These issues 

include how to partition the shared DBMS resources among the competing workloads, how to 

identify the resource preferences of a workload among the multiple resources in a resource 

allocation process, and how to predict performance of a workload with its certain amount of 

allocated resources. In our study, we specifically consider allocating buffer pool memory space 

and system CPU resources described in Section 3.1. To address these issues, there are three main 

components in our approach: 

• Resource model: The resource model determines how to partition the buffer pool memory 

space and system CPU resources and what are reasonable total amounts of the two 

resources for allocation. 

• Resource allocation method: The resource allocation method determines how to obtain 

optimal buffer pool memory and CPU share allocations in order to benefit the workload 

and system-wide performance most and achieve the workload performance objectives. 
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• Performance model: The performance model predicts the performance of a workload with 

certain amount of allocated resource shares in order to determine the benefit of the 

resources. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Economic Model for Multiple Resource Allocation 
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performance objectives. The competing workloads, as described in Chapter 4, are from different 

business importance classes and have unique performance objectives. The framework for multiple 

resource allocation, shown in Figure 10, consists of a set of shared resources, namely system CPU 

shares and buffer pool memory space, two resource brokers, one for CPU and one for memory, 

and consumer agents. The consumer agents represent competing workloads, which are in 

different importance classes, namely high importance, normal importance and best effort, as 

described in Section 3.4, to compete for the shared resources. The CPU and memory brokers 

conduct auctions simultaneously to sell their resources, and the consumer agents bid for shares of 

the resources. The total amount of the two resources for allocations in the economic model is 

determined by resource model and the multiple-resource utility function is defined in the 

consumer agents. 

The validation of our approach is presented at the end of this chapter. We extend the 

economic model simulator from single-resource allocation to simulate multiple-resource 

allocation processes and run the database workloads with their allocated resource shares on a 

DBMS to verify that their performance matches a given business importance policy. In 

experiments, OLTP workloads are used to run on a DB2 DBMS and system throughput and 

database buffer pool hit rate are measured to represent the DBMS performance under different 

configurations. 

5.1 Resource Model 

As discussed earlier, the resource model is used to partition resources and to determine a 

reasonable total amount of the resources for allocation. Simply assigning OS priorities to 

competing workloads according to the workloads’ business importance levels is not sufficient 

since the workloads may not be able to meet their performance requirements at the same time. 
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Therefore, we use the relative importance to describe workload business importance in our 

approach. We assume shared resources can be partitioned, thus individual competing workloads 

can be assigned a certain amount of the resource shares to achieve their performance objectives. 

We combine our previous resource models for buffer pool memory and CPU resources 

together in this multiple-resource allocation framework. Each workload is assigned its own buffer 

pool so buffer pool memory pages can be assigned directly to a workload. The CPU resource is 

partitioned by controlling the number of database agents that are available to serve requests on a 

database server. We configure the DBMS such that one database agent maintains one client 

connection from the competing workloads. The total amounts of resources are parameters in the 

multiple-resource allocation framework, so the approach can adapt to different database server 

configurations. 

5.2 Resource Allocation Method 

As introduced in Section 3.3, the goal of the consumer agents in the economic model is to acquire 

more shared resources in order to maximize the performance of the competing workloads. In the 

case of multiple resource allocations, a consumer agent must capture the resources in appropriate 

amounts such that none of the resources become a performance-limiting resource [28]. As an 

example, in a resource allocation process a consumer agent might randomly capture a large 

amount of system CPU shares and a small amount of buffer pool memory resources. With this 

result, the buffer pool memory resources would become the bottleneck resource and significantly 

limit the workload performance. The CPU resources, on the other hand, would be under-utilized. 

In order to maximize workload performance and resource utilization, a consumer agent needs a 

mechanism to identify the resource preferences of a workload in order to obtain an optimal 

<cpuopt, memopt> resource pair. 
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In our approach, consumer agents use a greedy algorithm to identify the optimal <cpuopt, 

memopt> resource pairs for their workloads. The multiple resource allocation is determined 

iteratively. In an iteration of the greedy algorithm, a consumer agent bids for a unit of the 

resources (either buffer pool memory or CPU) that it predicts will yield the greatest benefit to its 

performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Buffer Pool Memory and CPU Resource Pairs 
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Figure 11 shows a representation of the search state space for the allocation of buffer 

pool memory and CPU resources to an OLTP workload in our experiments. The starting node, 

n1,1, represents the minimum allocation given to each consumer agent, namely one unit of buffer 

pool memory and one unit of CPU resources, at the beginning of a resource allocation process. A 

consumer agent then traverses this directed weighted graph to search for the optimal <cpuopt, 

memopt> resource pair for its workload in order to achieve the highest performance based on its 

wealth. 

A node ni,j in the graph represents a possible resource allocation pair of i units of CPU 

and j units of buffer pool memory.  The weight on the edge (ni,j, ni,j+1) represents the predicted 

performance (in our case throughput) that could be achieved by the workload if the consumer 

agent acquires one more unit of buffer pool memory. Similarly, the weight on an edge (ni,j, ni+1,j) 

represents the predicted performance of the workload that could be achieved if one more unit of 

CPU resource is acquired. A consumer agent always chooses to bid for the resource that will 

yield the best performance. If a consumer agent’s bid is successful then conceptually it moves to 

the new node in the graph for the next iteration of the algorithm. If a consumer agent’s bid is not 

successful then it remains at the same node in the graph and bids for the same resource again in 

the next iteration. 

The graph has no cycles and the weight on each edge is determined by the performance 

model described in Section 5.3. The boundary nodes in Figure 11 have one or no outgoing edges 

when there is no more associated resource left. The proof that, for the optimal resource pair 

searching problem, a greedy algorithm generates a global optimum is easy to show since the 

addition of more resources will always result in a workload performance improvement at each 

step in the resource allocation algorithm, and this predicate (loop invariant) holds since the 

DBMS is not saturated until all the resources are claimed. 
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Besides the greedy algorithm, there might be some other methods which could be used to 

determine the resource allocations in the multiple resource allocation process. An interesting 

random method is the two resources alternating. Instead of identifying the critical resource at 

each resource allocation step, workload just bids on one unit of a resource that differs from the 

resource obtained in the previous resource allocation. For example, a workload is going to bid on 

a unit of CPU resources if it assigned a unit of buffer pool memory resources in its previous 

resource allocation. We compare these two methods and show their results in Section 5.3.2. 

5.3 Performance Model 

We predict performance of our DB2 DBMS and define the multiple resource utility function 

based on a performance model. The performance model estimates system throughput of the DB2 

DBMS with competing workloads running on it. As introduced in Section 4.2, a QNM can be 

used to predict the throughput, utilization, and latency of a computer system and its components, 

thus we apply QNMs to build a DB2 DBMS performance model in this study. 

5.3.1 DB2 Queueing Network Model 

We model the DB2 DBMS used in our experiments with a simple QNM. This DB2 QNM is used 

to predict performance of a workload at each step of the greedy algorithm, that is, to assign the 

weights to the edges of the graph in Figure 11. We use a closed QNM in our study as the number 

of requests in a database system would be fixed after a resource allocation step.  Figure 12 shows 

our closed QNM which consists of a CPU service center, an I/O service center, and a number of 

users concurrently running on it. The CPU service center represents the system CPU resources 

and the I/O service center represents buffer pool memory and disk system resources. We apply 

mean value analysis (MVA) [21] (see Appendix A for details) on this closed DB2 QNM to 

estimate throughput of the DBMS running an OLTP workload with a certain number of database 
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agents and a particular size of buffer pool. Single class workloads are considered on the DB2 

QNM in this study, but this DB2 QNM could also be extended to multiple classes to handle 

workloads of different types. 

 

 

 

 

 

 

 

 

 

Figure 12: DB2 Queueing Network Model 
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transactions concurrently in the system, and the service demand value can be experimentally 

determined using equation (4.2). Since our experimental environment is the same as the one 

described in Section 4.3.1, we can use the previous determined values in this study, namely the 

average CPU service demand, Scpu, is 0.0181 (seconds/transaction) for a transaction in the 

standard OLTP workloads under our specific experimental environment described in Section 5.4. 

I/O service demand of transactions in a workload directly depends on the database buffer 

pool size. If a database buffer pool size is large, then it can reduce the number of I/O operations 

required, which means a smaller average I/O service time for a request. On the other hand, if the 

buffer pool size is small, it can increase the number of I/O operations from disk system and so 

increases the average I/O service time for a request. For OLTP workloads, the average I/O service 

demands can be expressed as a function of buffer pool memory size, which is derived from 

Belady’s equation [2]. The derived average I/O service demand equation is [40]: 

b
IO McS ∗=                                                                                                                 (5.1) 

where, c and b are constants, and M is buffer pool size. In the equation (5.1) the constants c and b 

can be determined by equations (5.2) and (5.3) respectively. Different database systems would 

have different b and c values. 
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where SIO1 and SIO2 are I/O service demand values at buffer pool sizes of M1 and M2 buffer 

pages respectively. SIO1 and SIO2 are determined experimentally. For the TPC-C benchmark 

system with our specific experimental environment, we determined that the values for constants b 

and c are -0.513 and 7.481, respectively. Figure 13 shows a validation of the I/O service demand 

model defined in the equation (5.1). It shows the estimated and actual I/O service demand values 

for various buffer pool sizes when standard OLTP workloads are running on the database system. 

All the experimental numbers represent averages over 5 runs, and a 90% confidence level with 

≤10 confidence intervals for each data point. 

 

 

 

 

 

 

 

 

 

Figure 13: Validation of I/O System Service Demand 
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a validation of the DB2 QNM. It presents the predicted and actual throughput values for various 

resource pairs for the DBMS and TPC-C benchmark workload. The resource pairs are evenly 

chosen across the two resource ranges. All the experimental numbers are averages over 5 runs, 

and a 90% confidence level with ≤10 confidence intervals is used for each data point. 

 

 

 

 

 

 

 

 

 

Figure 14: Validation of Performance Model 
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the greedy algorithm generates adequate resource allocation at each step to a workload, and hence 

the workload achieves better performance then the alternating approach provides. If all resources 

are assigned to a single workload, then the workload would achieve its maximum performance no 

matter what resource allocation method is used. 

 

 

 

 

 

 

 

 

 

Figure 15: Comparison between Greedy Algorithm and Alternating Approach 
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where MVAThroughput(x, y) is the throughput provided by the QNM, cCPU is the number of database 

agents and mMEM is the number of buffer memory pages. XMax is the maximum throughput 

achieved by a workload with all resources allocated. Since all of the experimental workloads are 

of the same type, this defined utility function can be applied to all the workloads. 

5.4 Experimental Validation 

We extended our economic model simulator for single resource allocations described in Section 

4.3 to handle the multiple resource case. The experiments designed for validating the multiple 

resource allocation approach are similar to the ones used for single resource allocation studies. 

The validation addresses two main issues in the multiple-resource management studies, namely:  

• Does the resource allocation framework generate the multiple-resource allocations for 

competing workloads on a DBMS so that the resource allocations match the workload 

business importance policies? 

• Are the resource allocations resulting from the auctions appropriate for the competing 

workloads to achieve performances that match the workloads’ business importance levels? 

5.4.1 Experimental Environments 

All experiments are conducted with the system platform described in Section 4.3.1, namely DB2 

Universal Database Version 8.2 [15] running on an IBM xSeries 240 PC server with the Windows 

XP operating system.  The database server is equipped with two 1 GHz Pentium 3 processors, 2 

GB of RAM and an array of 11 disks. To eliminate the need to account for CPU parallelism in the 

DB2 QNM introduced in Section 5.2, we configure the system with one processor available. 

Windows XP operating system’s performance monitor is used to collect CPU and disk utilization 

data. 
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We apply the economic model to a single DB2 instance with an identical database for 

each competing workload running on the database server. The workloads have different 

importance levels and performance objectives. Each database is configured with one buffer pool 

and some number of database agents. Each database has one workload running on it, thus each 

workload has its own buffer pool and some system CPU shares. We use three standard OLTP 

workloads in the experiments, so the economic model allocates buffer pool memory space and 

system CPU resources across three identical databases based on a given workload business 

importance policy. 

We experimentally determined the appropriate amount of total resources for their 

allocations under the given DBMS configuration and the set of workloads. We use 32768 4KB 

buffer memory pages as the total buffer pool memory resources [7] and 25 database agents as the 

total CPU resources described in Section 4.1. 

The unit sizes of buffer pool memory and CPU resources are parameters in the economic 

model framework. We use 1000 buffer memory pages as one unit of buffer memory and 1 

database agent as one unit of CPU resources in this study as these granularities give a reasonable 

workload performance increment and make the resource allocation efficient. 

As described in Section 4.3.1, we take the experimental database and workloads from the 

OLTP TPC-C benchmark [36].  The size of each database is 10GB. The three workloads are 

TPCC-like OLTP batch workloads stored in three script files which are the same files used for the 

single resource allocation studies described in Section 4.3.1. The workloads send transactions to 

the DBMS with zero think time during their run. Each workload consists of 120,000 requests 

based on the 5 different types of the transactions of TPC-C benchmark. A workload is divided 

into 12 resource allocation intervals. The start of each interval provides a checkpoint at which a 
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resource allocation process takes place to reallocate resources to workloads based on their current 

importance levels and wealth. 

The economic model simulator is written in Java (see Appendix C for UML class 

diagram) and the workload script files are used as the simulator input. The output of the simulator 

is the plan of the multiple resource allocations, that is, a list of the number of buffer pool memory 

pages and database agents for the competing workloads at each of their checkpoints. According to 

the output, database configuration commands are inserted into the workload script files at each of 

the checkpoints, allowing for a database to dynamically reconfigure the resources during a run. 

By running the workloads on the DB2 database server, we verify that the workloads’ performance 

matches their business importance levels. Before each run of the workloads, the databases are 

restored to their initial states. Buffer pool hit rate and workload throughput are taken to measure 

the workloads’ performance. Each experiment was run five times, and the average over the five 

runs and 90% confidence level with ≤10% confidence intervals are used for each reported 

number. 

5.4.2 Resource Allocations 

The first set of experiments was conducted to determine whether our approach generates the 

multiple resource allocations that match a given workload’s business importance policy. The 

workloads are assigned one of three different importance classes, namely the high importance 

class, the normal importance class, and the best effort class, as described in Section 3.4. As in 

Section 4.3.2, we experimented with three different sets of importance multipliers to validate the 

multiple resource allocations with the economic model. An importance multiplier set represents 

the importance multiplier values of the three importance classes in order of {best effort, normal 

importance, high importance}. The three sets used were {1, 1, 1}, {1, 5, 6}, and {1, 5, 10}. These 
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configurations were designed to examine how resource allocations change with the importance 

multipliers. 

 

 

 

 

 

 

 

 

 

Figure 16: Buffer Pool Memory Allocations for Different Importance Multiplier Sets 
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allocate resources in this case, the high importance and normal importance workloads are 

allocated significantly more resources than the best effort workload, while the high importance 

workload is allocated slightly more resources than the normal importance workload. The set {1, 

5, 10} represents the case where the high importance class is much more important than the 

normal importance class, and the normal importance class is much more important than the best 

effort class. In this case, the high importance workload is allocated more resources than the 

normal important workload, and the normal importance workload wins significantly more 

resources than the best effort workload. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: CPU Resource Allocations for Different Importance Multiplier Sets 
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important workloads. Comparing these results with the results obtained in our previous single 

resource allocation studies, we see that the trend of multiple resource allocations is same as the 

trend shown in the single resource allocations, which is more important workloads assigned more 

resources than less important workloads. The amounts of assigned resources to individual 

workloads, however, are different. The difference is attributed to the fact that the resource 

allocation methods and the resource utility functions are different in the single and multiple 

resource management studies. We notice that the amount of allocated resources for competing 

workloads, shown in Figure 16 and Figure 17, presents a small difference when applying the 

importance multiplier set {1, 1, 1}. This difference is due to the fact that the economic model 

simulator assigns the first bidder resources when all the bidders submit the same bids. 

5.4.3 Workload Performance 

The second set of experiments was conducted to determine whether the performance achieved by 

the competing workloads with their allocated resources generated by the economic model match a 

given business importance policy. In the experiments, the workload importance multiplier sets 

were the same as the sets used in the experiments shown in Section 5.4.2. We could therefore 

observe the achieved performance of the workloads with the allocated resources obtained in the 

first set of experiments. The workloads were run on the DB2 DBMS using the resource 

allocations suggested by our simulator. Database throughput and buffer pool hit rate were 

measured as performance metrics. The experimental results are shown in Figure 18 and Figure 19 

respectively.  

In Figure 18 we observe that the throughput of the workloads achieved match the given 

business importance policies. When the competing workloads have the same business 

importance, namely applying the importance multiplier set {1, 1, 1} on the economic model, the 
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workloads achieve a similar throughput. When the workloads are of different business importance 

levels, namely applying multiplier sets {1, 5, 6} and {1, 5, 10} on the economic model 

respectively, then the important workloads achieve higher throughput than the less important 

workloads. The trend shows that the more important a workload is, the more resources it receives 

and hence, the workload performance is greater. Based on the results shown in Figure 18, we 

notice that throughputs of the workloads achieved present little differences with applying the 

importance multiplier set {1, 1, 1}. The differences are due to the fact that the amounts of 

allocated resources to the competing workloads have little differences described in Section 5.4.2. 

 

 

 

 

 

 

 

 

 

Figure 18: Workload Throughput for Different Importance Multiplier Sets 
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Figure 18. When the workloads had the same business importance, then database buffer pool hit 

rates are similar, while with different business importance levels, the important workloads 

achieve higher buffer pool hit rates than the less importance workloads. We notice that the 

difference in the hit rate between the high importance class and the normal importance class is 

small when the difference between their importance multipliers is large (that is, with using the 

multiplier set {1, 5, 10}). This is likely due to fact that the total amount of buffer pool memory 

available for allocation is small, about 132MB in our experiments. So even if the high importance 

workload obtained more buffer pool memory pages, it could not achieve significantly higher 

buffer pool hit rate than the others. Based on our experimental results, we conclude that our 

framework for multiple resource allocations is successful in obtaining performance that matches 

the competing workloads’ business importance policies. 

 

 

 

 

 

 

 

 

 

Figure 19: Buffer Pool Hit Rate for Different Importance Multiplier Sets 
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5.5 Summary 

In this chapter, we demonstrate an approach that uses an economic model to allocate multiple 

resources to competing workloads on a DBMS. The approach consists of three main components, 

namely resource models, a resource allocation method, and a performance model. The competing 

database workloads have unique performance objectives and are labeled with different business 

importance. We specifically investigate simultaneously allocating buffer pool memory space and 

system CPU resources. 

The buffer pool memory and CPU resource modeling methods, proposed in our previous 

studies, are applied to partition the multiple resources respectively and to determine the 

reasonable total amount the resources for allocation in the economic model. We propose a 

resource allocation method in the approach, based on a greedy algorithm, to find optimal resource 

pairs for the competing workloads to achieve their performance objectives. By using the resource 

allocation method, consumer agents can determine bottleneck resources and identify resource 

preferences of a workload in the resource allocation process. In order to predict system 

performance and define the multiple resource utility function, we apply QNMs to estimate the 

system performance. The DB2 QNM is built as a closed QNM with a CPU and an I/O service 

centers to represent system CPU and I/O resources respectively. MVA is applied on the closed 

DB2 QNM to estimate the system performance for a workload running on it with certain amount 

of buffer pool memory and CPU resources. 

We implement the economic model as a simulator to validate our approach for the 

multiple resource allocation. In the experiments, the TPC-C benchmark workloads are used to 

represent competing workloads running on a DB2 DBMS. We use the simulator to simulate the 

multiple resource allocation processes and run the workloads with their allocated resources on the 

DB2 database server to verify the workloads’ performances. Workload throughput and database 
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buffer pool hit rate are taken as performance metrics to measure the competing workloads’ 

performance. The experimental results show that by using the economic model, the multiple 

resource allocations match the given workload business importance policies and the workloads’ 

performances obtained with their allocated resources match the workload business importance 

levels. 
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Chapter 6 

Conclusions and Future Work 

6.1 Conclusions 

In this thesis we study resource allocation in a DBMS. We consider the business-level workload 

importance policy as an administrative objective given to an autonomic DBMS to manage 

resource allocation for its competing workloads. 

We present a general framework that uses an economic model to allocate resources in an 

autonomic DBMS. The economic model consists of four components, namely shared resources, 

resource brokers, a trade mechanism, and consumer agents. Resource brokers conduct auctions to 

sell the shared resources, and consumer agents represent workloads to bid for the shared 

resources via an auctioning and biding based trade mechanism. A consumer agent, in the 

economic model, consists of a workload, a certain amount of wealth, and a utility function. The 

wealth is determined by the workload cost and the workload business importance level. By using 

its utility function, the consumer agent determines the maximum bids in the resource auctions. 

To verify the effectiveness of the framework, we apply the economic model to allocate 

system CPU shares and to simultaneously allocate multiple resources, namely buffer pool 

memory space and system CPU shares, to competing workloads in a DBMS based on the 

workload business importance. 

For allocating system CPU resources, we propose the resource modeling method, through 

controlling the number of database agents used in a DBMS, to partition system CPU resources 

and experimentally determine the reasonable total amount of CPU resources for allocation. In 

order to define the CPU resource utility function, we apply a queueing network model on our 

DB2 DBMS to estimate the system performance for a workload running on it with certain amount 
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of allocated CPU resources. For allocating the multiple resources, we propose a resource 

allocation method that uses a greedy algorithm to find optimal resource pairs for the competing 

workloads to achieve their performance objectives. In order to predict system performance and 

define the multiple resource utility function, we apply a queueing network model again on our 

DB2 DBMS to estimate the system performance for a competing workload with certain amount 

of buffer pool memory and CPU resources. 

We extend the economic model simulator created by Boughton [7] to validate our 

approaches for the CPU and multiple resource allocations. In the experiments, TPC-C benchmark 

workloads are used on a DB2 DBMS. We use the simulator to simulate the resource allocation 

processes and run the workloads with their allocated resources on the DB2 database server to 

verify the competing workloads’ performances. The experimental results show that with using the 

economic model, the resource allocations match the given workload business importance policies 

and the workloads’ performances achieved with their allocated resources match the workload 

business importance levels. 

A challenge of using the economic model for the resource allocation is to define the 

resource utility function. As a key mechanism in the resource allocation process, resource utility 

functions must first be defined in an economic model. In our study, a utility function maps 

usefulness of resources to performance of a workload achieved, and it also needs to be a non-

decreasing function with return values in real number range [0, …, 1]. To achieve these features, 

in our approach we define the resource utility functions based on our proposed performance 

models. 

In conclusion, our study makes three contributions to performance management. The first 

contribution of the work is an investigation of using an economic model to tune CPU resource 
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allocations in a DBMS for multi-class workloads with unique performance requirements. The 

second contribution is the specification of a resource allocation framework that uses an economic 

model to manage multiple resources for multi-class workloads with unique performance 

objectives. The third contribution is the extension of the economic model simulator created by 

Boughton [7] to validate the resource allocation framework. By using the economic model, we 

show a way that a high-level business importance policy can be automatically translated into an 

autonomic DBMS system-level resource tuning actions. Through experiments we have validated 

the effectiveness of the framework. 

6.2 Future Work 

To implement the resource allocation framework within a DBMS, there is an issue that needs first 

to be addressed. In this study, we use batch workloads in which all queries are known in advance. 

But when integrating the resource allocation framework into a DBMS, the issue is to predict the 

cost of a workload in an upcoming resource allocation interval. There are several possible 

approaches that could be used to address this issue. One approach is to estimate a workload cost 

for an upcoming interval based on the costs of the workload in previous intervals. Another 

approach is to allow consumer agents to request additional resources at any time by utilizing the 

feedback loop feature provided by the autonomic DBMS to verify that the workload SLAs are 

met, and not wait for the next resource allocation interval. The third approach is to intercept the 

incoming requests by using the DBMS performance management component, such as DB2 Query 

Patroller [16], to estimate the query costs in a workload. 

In the next step of our research, we plan to add OLAP workloads to study the 

effectiveness of the economic model with more complex workloads in order to extend the 

economic model to accept random workloads. We also plan to try exchange based economy to 



 

 69 

replace the current price based economy to allow the consumer agents to directly exchange their 

resources in order to compare to the trading mechanism we currently use in the economic model. 
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Appendix A 

Queueing Network Models 

 

A.1 Introduction 

Queueing network modeling is an approach to computer system modeling in which the computer 

system is represented as a network of queues which is evaluated analytically. A network of 

queues is a collection of service centers, which represent system resources, and customers, which 

represent users or transactions. Analytic evaluation involves using software to solve efficiently a 

set of equations induced by the network of queues and its parameters [21]. 

In a queueing network model (QNM), service centers can be any active resource such as 

a CPU, disk, or network link. QNMs can predict the latency, throughput and utilization of a 

system and its components [38]. In most cases, throughput and utilization are predicted within 

10% of measured values, while latency predictions are within 30% [21]. There are several types 

of QNMs, namely asymptotic models, open network models, and closed network models [38].  

Asymptotic models are the simplest application of queuing network models. They are 

used to predict the best-case and worst-case latency and throughput of a single service center. A 

typical use of asymptotic bounds is to examine the behavior of a bottleneck resource under 

various loads. In an open network model, customers pass through a system once. For example, a 

network device processing a stream of packets would be modeled as an open system. The number 

of customers in the system is calculated from the customer arrival rate and the characteristics of 

the service centers. If there are several distinct types of customers, a multi-class open model is 

used. In a closed network model, the number of customers is fixed. The classic example is a time-

sharing computer system with a fixed number of user terminals. In a closed model, the number of 
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customers is known and the throughput is calculated. An iterative method known as Mean Value 

Analysis (MVA) is used to calculate throughput and latency [38]. 

Although queueing network models are a versatile and powerful way to model system 

performance, they have some limitations. All of the solution techniques require that model meets 

certain conditions that make it a separable model; in some cases this could make the model 

deviate significantly from the real system [38]. 

A.2 QNM Service Center 

A.2.1 Single Service Center 

In a single service center, customers arrive at the service center, wait in the queue if necessary, 

receive service from the server, and depart. In fact, this service center and its arriving customers 

constitute a basic queuing network model. 

 

 

 

 

Figure 20: A Single Service Center [21] 

 

A model such as the one in Figure 20 has two parameters: the workload intensity and the 

service demand. The workload intensity in this case is the rate at which customers arrive (e.g. one 

customer every two seconds, or 0.5 customers/second). The service demand is the average service 

requirement of a customer (e.g. 1.25 seconds). For specific parameter values, it is possible to 
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evaluate this model by solving some simple equations, to yield performance measures such as 

utilization (the proportion of time the server is busy), residence time (the average time spent at 

the service center by a customer, both queueing and receiving service), queue length (the average 

number of customers at the service center, both waiting and receiving service), and throughput 

(the rate at which customers pass through the service center) [21]. 

A.2.2 Multiple Service Centers 

Characterizing a contemporary computer system by two parameters is an oversimplification of 

reality. Figure 21 represents a more practical model in which each system resource (in this case a 

CPU and an array of disks) is represented by a separate service center. 

 

 

 

 

 

 

 

Figure 21: A Network of Queues [21] 
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represent transactions in the system, then the workload intensity corresponds to the rate at which 

users submit these transactions to the system, and the service demand at each service center 

represents the total service requirement per transaction at the corresponding resource in the 

system. The customers are arriving, circulating among the service centers, and then leaving the 

system. The pattern of circulation among the centers is not important, however; only the total 

service demand at each center matters [21]. 

A.3 QNM Parameterization and Validation 

The parameterization process of queueing network models is relatively straightforward. For 

example, to calculate the CPU service demand for a customer in a queueing network model of an 

existing system, we would observe the system in operation and would measure two quantities: the 

number of seconds that the CPU was busy, and the number of transactions that were processed. 

Then, we would divide the busy time by the number of transactions completed to determine the 

average number of seconds of CPU service needed for each transaction to complete. 

There are two main approaches to evaluating queueing network models. The first 

involves calculating bounds on performance measures, rather than specific values. This approach 

involves determining upper and lower bounds on performance parameter values such as response 

time for a particular set of inputs (workload intensity and service demands). The virtue of this 

approach is that the calculations are simple enough to be carried out by hand, and the resulting 

bounds can contribute significantly to understanding the system under study. 

The second approach, called the mean value analysis (MVA), involves calculating the 

values of the performance measures. While the algorithms for doing this are sufficiently 

complicated that the use of computer programs is necessary, it is important to emphasize that 

these algorithms are extremely efficient. Approximate MVA algorithms have been devised in 
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order to reduce the complexity of calculations while keeping an acceptable accuracy. The running 

time of the most efficient general algorithm of the MVA grows as the product of the number of 

service centers with the number of customer classes, and is independent of the number of 

customers in each class. 

The performance of any particular system is determined by carefully analyzing certain 

performance measures like response times, throughputs and utilization. The response time is the 

average time interval elapsed between the instant a transaction is submitted to the system for 

processing until the answer begins to appear at the user's terminal. Throughput is the average 

number of transactions or jobs executed per unit time. In other words, it is the rate at which 

requests are serviced. Utilization is the percentage of time the device is being used, during a given 

time interval. A device is saturated if its utilization approaches 100% [21]. 

A.4 Fundamental Laws and Mean Value Analysis 

A.4.1 Utilization Law 

The utilization of a resource is equal to the product of the throughput of that resource and the 

average service requirement at that resource. The utilization law is stated as: 

SXU ∗=  

where: U is the utilization of the resource, X is the throughput, and  S is the average service 

requirement. 

A.4.2 Little’s Law 

Little’s Law states that the average number of requests in a system is equal to the product of the 

throughput of that system and the average time spent in that system by a request. Little’s law is 

stated as: 

RXN ∗=  
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where: N is the average number of requests in the system, X is the throughput, and R is the system 

residence time per request. 

A.4.3 Forced Flow Law 

This law is based on the fact that the flows or throughput in all parts of a system must be 

proportional to each other. The forced flow law is stated as: 

XVX kk ∗=  

where: Xk is the throughput at a resource k in the system, Vk is the visit count of the resource k 

and, X is the throughput of the system. 

A.4.4 Mean value analysis 

Mean value analysis is the technique most commonly used to resolve closed queueing networks 

models such as the model used in this thesis. The mean value analysis is based on three equations: 

1 – The service center residence time equation: 

( ) ( )( )11 −+∗= NQDNR kkk  

where: Rk(N) is the residence time at center k, Dk is the time needed at resource k for a transaction 

to be completed, and Qk(N-1) is the queue length at resource k when there are N-1 customers in 

the system. 

2 - Little’s Law applied to the queueing network as a whole: 

( )
( )∑ =

+
= K

k k NRZ
NNX

1

 

where: X(N) is the system throughput, Rk(N) is the residence time at center k when there are N 

customers in the system, and Z is the think time. 

3 - Little’s Law applied to the service centers individually: 

( ) ( ) ( )NRNXNQ kk ∗=  
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where: Qk(N) is the queue length at resource k when there are N customers in the system, X(N) is 

the throughput of the system, and Rk(N) is the residence time at center k. 

For the trivial case when the number of request is 1, N = 1, there is no queueing at any of 

the resources, Qk(0) = 0, and the residence time at each of the resources is equal to the service 

demand from the resource. Therefore, the queue length, when there is one customer in the system, 

is obtained. Based on this result, the 3 equations are resolved again for the case when N = 2, and 

so on. The exact MVA algorithm is shown in Figure 22 [21]. 

 

 

 

 

 

 

 

 

 

 

Figure 22: Exact MVA Algorithm [21] 
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for k ← 1 to K do Qk ← X * Rk 

end 
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Appendix B 

TPC-C Benchmark 

The Transaction Processing Performance Council (TPC) is a non-profit corporation founded to 

define transaction processing and database benchmarks and to disseminate objective, verifiable 

TPC performance data to industry. One of the TPC database benchmarks is the TPC 

BenchmarkTM C (TPC-C), which is an on-line transaction processing (OLTP) benchmark [36].  

TPC-C simulates a complete computing environment where a population of users 

executes transactions against a database. The benchmark is centered on the principal activities 

(transactions) of an order-entry environment. These transactions include entering and delivering 

orders, recording payments, checking the status of orders, and monitoring the level of stock at the 

warehouses. TPC-C involves a mix of five concurrent transactions of different types and 

complexity either executed on-line or queued for deferred execution. The database is comprised 

of nine types of tables with a wide range of record and population sizes. TPC-C is measured in 

transactions per minute (tpmC) [36]. 

 

 

 

 

 

 

Figure 23: Hierarchy of the Business Environment [35] 
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The Company portrayed by the benchmark is a wholesale supplier with a number of 

geographically distributed sales districts and associated warehouses. As the Company's business 

expands, new warehouses and associated sales districts are created. Each regional warehouse 

covers 10 districts.  Each district serves 3,000 customers. All warehouses maintain stocks for the 

100,000 items sold by the Company. Figure 23 illustrates the warehouse, district, and customer 

hierarchy of TPC-C's business environment [35]. 

The components of the TPC-C database are defined to consist of nine separate and 

individual tables. The relationships among these tables are defined in the entity-relationship 

diagram shown in Figure 24. 

 

 

 

 

 

 

Figure 24: Database Schema for TPC-C Benchmark [35] 

 

In Figure 24, all numbers shown illustrate the database population requirements. The 

numbers in the entity blocks represent the cardinality of the tables (number of rows). These 

numbers are factored by W, the number of Warehouses, to illustrate the database scaling. The 

numbers next to the relationship arrows represent the cardinality of the relationships (average 

number of children per parent). The plus (+) symbol is used after the cardinality of a relationship 
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or table to illustrate that this number is subject to small variations in the initial database 

population over the measurement interval as rows are added or deleted. The nine individual tables 

are defined as the following: 

 

Field Name Field Definition Comments 

W_ID 2*W unique IDs W Warehouses are populated 

W_NAME variable text, size 10  

W_STREET_1 variable text, size 20  

W_STREET_2 variable text, size 20  

W_CITY variable text, size 20  

W_STATE fixed text, size 2  

W_ZIP fixed text, size 9  

W_TAX signed numeric(4,4) Sales tax  

W_YTD signed numeric(12,2) Year to date balance 

Primary Key: W_ID 
 

Table 1: WAREHOUSE Table Layout [35] 
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Field Name Field Definition Comments 

D_ID 20 unique IDs 10 are populated per warehouse 

D_W_ID 2*W unique IDs  

D_NAME variable text, size 10  

D_STREET_1 variable text, size 20  

D_STREET_2 variable text, size 20  

D_CITY variable text, size 20  

D_STATE fixed text, size 2  

D_ZIP fixed text, size 9  

D_TAX signed numeric(4,4) Sales tax 

D_YTD signed numeric(12,2) Year to date balance 

D_NEXT_O_ID 10,000,000 unique IDs Next available Order number 

Primary Key: (D_W_ID, D_ID) 

D_W_ID Foreign Key, references W_ID 
 

Table 2: DISTRICT Table Layout [35] 
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Field Name Field Definition Comments 

C_ID 96,000 unique IDs 3,000 are populated per district 

C_D_ID 20 unique IDs  

C_W_ID 2*W unique IDs  

C_FIRST variable text, size 16  

C_MIDDLE fixed text, size 2  

C_LAST variable text, size 16  

C_STREET_1 variable text, size 20  

C_STREET_2 variable text, size 20  

C_CITY variable text, size 20  

C_STATE fixed text, size 2  

C_ZIP fixed text, size 9  

C_PHONE fixed text, size 16  

C_SINCE date and time  

C_CREDIT fixed text, size 2 "GC"=good, "BC"=bad 

C_CREDIT_LIM signed numeric(12, 2)  

C_DISCOUNT signed numeric(4, 4)  

C_BALANCE signed numeric(12, 2)  

C_YTD_PAYMENT signed numeric(12, 2)  

C_PAYMENT_CNT numeric(4)  

C_DELIVERY_CNT numeric(4)  

C_DATA variable text, size 500 Miscellaneous information 

Primary Key: (C_W_ID, C_D_ID, C_ID) 

(C_W_ID, C_D_ID) Foreign Key, references (D_W_ID, D_ID) 
 

Table 3: CUSTOMER Table Layout [35] 
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Field Name Field Definition Comments 

H_C_ID 96,000 unique IDs  

H_C_D_ID 20 unique IDs  

H_C_W_ID 2*W unique IDs  

H_D_ID 20 unique IDs  

H_W_ID 2*W unique IDs  

H_DATE date and time  

H_AMOUNT signed numeric(6, 2)  

H_DATA variable text, size 24 Miscellaneous information 

Primary Key: none 

(H_C_W_ID, H_C_D_ID, H_C_ID) Foreign Key, references (C_W_ID, C_D_ID, C_ID) 

(H_W_ID, H_D_ID) Foreign Key, references (D_W_ID, D_ID) 
 

Table 4: HISTORY Table Layout [35] 

 

Field Name 
 

Field Definition 

 

Comments 

NO_O_ID 10,000,000 unique IDs  

NO_D_ID 20 unique IDs  

NO_W_ID 2*W unique IDs  
 

Primary Key: (NO_W_ID, NO_D_ID, NO_O_ID) 

(NO_W_ID, NO_D_ID, NO_O_ID) Foreign Key, references (O_W_ID, O_D_ID, O_ID) 

 

Table 5: NEW-ORDER Table Layout [35] 
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Field Name Field Definition Comments 

O_ID 10,000,000 unique IDs  

O_D_ID 20 unique IDs  

O_W_ID 2*W unique IDs  

O_C_ID 96,000 unique IDs  

O_ENTRY_D date and time  

O_CARRIER_ID 10 unique IDs, or null  

O_OL_CNT numeric(2) Count of Order-Lines 

O_ALL_LOCAL numeric(1)  

Primary Key: (O_W_ID, O_D_ID, O_ID) 

(O_W_ID, O_D_ID, O_C_ID) Foreign Key, references (C_W_ID, C_D_ID, C_ID) 
 

Table 6: ORDER Table Layout [35] 
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Field Name Field Definition Comments 

OL_O_ID 10,000,000 unique IDs  

OL_D_ID 20 unique IDs  

OL_W_ID 2*W unique IDs  

OL_NUMBER 15 unique IDs  

OL_I_ID 200,000 unique IDs  

OL_SUPPLY_W_ID 2*W unique IDs  

OL_DELIVERY_D date and time, or null  

OL_QUANTITY numeric(2)  

OL_AMOUNT signed numeric(6, 2)  

OL_DIST_INFO fixed text, size 24  

Primary Key: (OL_W_ID, OL_D_ID, OL_O_ID, OL_NUMBER) 

(OL_W_ID, OL_D_ID, OL_O_ID) Foreign Key, references (O_W_ID, O_D_ID, O_ID) 

(OL_SUPPLY_W_ID, OL_I_ID) Foreign Key, references (S_W_ID, S_I_ID) 
 

Table 7: ORDER-LINE Table Layout [35] 

 

Field Name Field Definition Comments 

I_ID 200,000 unique IDs 100,000 items are populated 

I_IM_ID 200,000 unique IDs Image ID associated to Item 

I_NAME variable text, size 24  

I_PRICE numeric(5, 2)  

I_DATA variable text, size 50 Brand  information 

Primary Key: I_ID 
 

Table 8: ITEM Table Layout [35] 
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Field Name Field Definition Comments 

S_I_ID 200,000 unique IDs 100,000 populated per warehouse 

S_W_ID 2*W unique IDs  

S_QUANTITY signed numeric(4)  

S_DIST_01 fixed text, size 24  

S_DIST_02 fixed text, size 24  

S_DIST_03 fixed text, size 24  

S_DIST_04 fixed text, size 24  

S_DIST_05 fixed text, size 24  

S_DIST_06 fixed text, size 24  

S_DIST_07 fixed text, size 24  

S_DIST_08 fixed text, size 24  

S_DIST_09 fixed text, size 24  

S_DIST_10 fixed text, size 24  

S_YTD numeric(8)  

S_ORDER_CNT numeric(4)  

S_REMOTE_CNT numeric(4)  

S_DATA variable text, size 50 Make information 

Primary Key: (S_W_ID, S_I_ID) 

S_W_ID Foreign Key, references W_ID 

S_I_ID Foreign Key, references I_ID 
 

Table 9: STOCK Table Layout [35] 
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The mixed five different concurrent transactions of TPC-C as follow [35]: 

• New-Order: consists of entering a complete order through a single database transaction. It 

represents a mid-weight, read-write transaction with a high frequency of execution and 

stringent response time requirements to satisfy on-line users. This transaction is the 

backbone of the workload. It is designed to place a variable load on the system to reflect 

on-line database activity as typically found in production environments. 

• Payment: updates the customer's balance and reflects the payment on the district and 

warehouse sales statistics. It represents a light-weight, read-write transaction with a high 

frequency of execution and stringent response time requirements to satisfy on-line users. In 

addition, this transaction includes non-primary key access to the CUSTOMER table. 

• Order-Status: queries the status of a customer's last order. It represents a mid-weight read-

only database transaction with a low frequency of execution and response time requirement 

to satisfy on-line users. 

• Delivery: consists of processing a batch of 10 new (not yet delivered) orders. Each 

order is processed (delivered) in full within the scope of a read-write database 

transaction. The number of orders delivered as a group (or batched) within the 

same database transaction is implementation specific. The business transaction 

comprised of one or more (up to 10) database transactions, has a low frequency of 

execution and complete within a relaxed response time requirement. The Delivery 

transaction is intended to be executed in deferred mode through a queuing 

mechanism, rather than interactively, with terminal response indicating transaction 

completion. 
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• Stock-Level: determines the number of recently sold items that have a stock level below a 

specified threshold. It represents a heavy read-only database transaction with a low 

frequency of execution, a relaxed response time requirement, and relaxed consistency 

requirements. 

Table 10 lists each transaction type is available to a TPC-C workload. Over a run, the 

TPC-C workload maintains a percentage of mix for each transaction type as follows: 

 

           Transaction Type     Minimum % of mix 

 New-Order  45.0  

 Payment  43.0  

 Order-Status  4.0  

 Delivery  4.0  

 Stock-Level  4.0  

 

Table 10: TPC-C Transaction Percentage 
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Appendix C 

Economic Model Simulator 

We extend the economic model simulator created by Boughton [7] to validate our approaches for 

the CPU and multiple resource allocations respectively. The simulators were created using 

JAVATM programming system and implemented as shown in the UML class diagrams presented 

in Figure 25 and Figure 26. The Simulator class contains the main method in each of the diagrams 

and controls the simulator. 
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Figure 25: UML Class Diagram for CPU Resource Allocation Simulator 
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Figure 26: UML Class Diagram for Multiple-Resource Allocation Simulator 


