• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Activation of EPAC Inhibits the Aquisition of Nucleus Accumbens Amphetamine Place Preference in a Dose-Dependent Manner in Rats

    Thumbnail
    View/Open
    Park_Sung_Woo_200804_MSc.pdf (2.091Mb)
    Date
    2008-04-28
    Author
    Park, Sung Woo (Calvin)
    Metadata
    Show full item record
    Abstract
    Reward-related learning occurs when previously neutral stimuli acquires an enhanced ability to elicit approach and other responses. Studies in the past have shown that dopamine receptor-mediated 3’,5’-cyclic adenosine monophosphate (cAMP)-dependent intracellular signalling is important for reward-related learning. Until recently, cAMP-dependent protein kinase (PKA) was the only known signalling molecule that was activated by cAMP. However, it has been discovered that another enzyme, exchange protein directly activated by cAMP (Epac), is also activated by cAMP. Thus, it is possible that cAMP mediates reward-related learning by an Epac-dependent signalling pathway. The present study used a conditioned place preference (CPP) paradigm to investigate whether Epac is involved in the acquisition of reward-related learning. Bilateral injections of amphetamine (20 µg/0.5μl/side) into the nucleus accumbens (NAc) have been shown in previous studies to reliably produce a CPP. Thus, amphetamine (20 µg) and Sp-adenosine 3’,5’-cyclic monophosphorothioate triethylamanine (Sp-cAMPS) (0.1, 1.0, 10, 15, 20 µg), an agent that activates both PKA and Epac, or amphetamine (20 µg) and 8-(4-chlorophenylthio)-2’-O-methyladenosine-3’,5’-cyclic monophosphate (8-pCPT) (0.73, 1.27, 1.45, 2.89, 5.78, 11.56 µg), an agent that selectively activates Epac, were co-injected into NAc to determine their effects on the acquisition of CPP. Results showed that 8-pCPT (1.45 µg), but not lower or higher doses, inhibited CPP. Sp-cAMPS (0.1, 15, 20 µg) also inhibited CPP, replicating the results of previous studies. The results implicate Epac in the acquisition of reward-related learning.
    URI for this record
    http://hdl.handle.net/1974/1176
    Collections
    • Queen's Graduate Theses and Dissertations
    • Centre for Neuroscience Studies Graduate Theses
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV