Joint Source-Channel Coding Reliability Function for Single and Multi-Terminal Communication Systems
Abstract
Traditionally, source coding (data compression) and channel coding (error protection) are performed separately and sequentially, resulting in what we call a tandem (separate) coding system. In practical implementations, however, tandem coding might involve a large delay and a high coding/decoding complexity, since one needs to remove the redundancy in the source coding part and then insert certain redundancy in the channel coding part. On the other hand, joint source-channel coding (JSCC), which coordinates source and channel coding or combines them into a single step, may offer substantial improvements over the tandem coding approach.
This thesis deals with the fundamental Shannon-theoretic limits for a variety of communication systems via JSCC. More specifically, we investigate the reliability function (which is the largest rate at which the coding probability of error vanishes exponentially with increasing blocklength) for JSCC for the following discrete-time communication systems: (i) discrete memoryless systems; (ii) discrete memoryless systems with perfect channel feedback; (iii) discrete memoryless systems with source side information; (iv) discrete systems with Markovian memory; (v) continuous-valued (particularly Gaussian) memoryless systems; (vi) discrete asymmetric 2-user source-channel systems.
For the above systems, we establish upper and lower bounds for the JSCC reliability function and we analytically compute these bounds. The conditions for which the upper and lower bounds coincide are also provided. We show that the conditions are satisfied for a large class of source-channel systems, and hence exactly determine the reliability function. We next provide a systematic comparison between the JSCC reliability function and the tandem coding reliability function (the reliability function resulting from separate source and channel coding). We show that the JSCC reliability function is substantially larger than the tandem coding reliability function for most cases. In particular, the JSCC reliability function is close to twice as large as the tandem coding reliability function for many source-channel pairs. This exponent gain provides a theoretical underpinning and justification for JSCC design as opposed to the widely used tandem coding method, since JSCC will yield a faster exponential rate of decay for the system error probability and thus provides substantial reductions in complexity and coding/decoding delay for real-world communication systems.
URI for this record
http://hdl.handle.net/1974/1207Collections
Request an alternative format
If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology CentreRelated items
Showing items related by title, author, creator and subject.
-
Source-Channel Coding Techniques in the Presence of Interference and Noise
Abou Saleh, Ahmad (2015-09-25)As wireless systems proliferate worldwide, interference is becoming one of the main problems for system designers. Interference, which occurs when multiple transmissions take place over a common communication medium, ... -
Optimal Binary Signaling for Correlated Sources over the Orthogonal Gaussian Multiple-Access Channel
Mitchell, Tyson (2014-12-03)Optimal binary communication, in the sense of minimizing symbol error rate, with nonequal probabilities has been derived in [1] under various signalling configurations for the single-user case with a given average energy ... -
Source-Channel Mappings with Applications to Compressed Sensing
Abou Saleh, Ahmad (2011-07-29)Tandem source-channel coding is proven to be optimal by Shannon given unlimited delay and complexity in the coders. Under low delay and low complexity constraints, joint source-channel coding may achieve better performance. ...