• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Calibration Hardware Research and Development for SNO+

    Thumbnail
    View/Open
    Walker_Matthew_201405_MSc.pdf (8.763Mb)
    Date
    2014-06-02
    Author
    Walker, Matthew
    Metadata
    Show full item record
    Abstract
    The SNO+ experiment is a kilo-tonne scale liquid scintillator detector located at SNOLAB in Sudbury, Ontario, Canada. As the successor to the Sudbury Neutrino Observatory, SNO+ will use linear alkylbenzene (LAB) as the scintillator to study neutrinos. During the solar phase, ux measurements will be made of low energy neutrinos originating in the Sun. In another phase, 800 kg of tellurium will loaded into the scintillator to search for neutrinoless double beta decay. Measurements will also be made of neutrinos coming from nearby nuclear reactors and from inside Earth's mantle and crust.

    To enable these multiple physics goals, a sensitive calibration procedure must be carried out in order to fully understand the detector. The optical and energy responses of the detector will be measured with calibration sources deployed throughout the acrylic vessel. These sources must be connected to the observatory deck above the vessel by gas capillaries, optical bres, and signal wires housed in specially designed submersible umbilical cables. The design and fabrication of these umbilical cables is presented. Development work on a deployed radon calibration source will also be described.
    URI for this record
    http://hdl.handle.net/1974/12225
    Collections
    • Queen's Graduate Theses and Dissertations
    • Department of Physics, Engineering Physics and Astronomy Graduate Theses
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV