Show simple item record

dc.contributor.authorKeske, Eric
dc.contributor.otherQueen's University (Kingston, Ont.). Theses (Queen's University (Kingston, Ont.))en
dc.date2015-05-01 18:13:38.967en
dc.date.accessioned2015-05-04T15:20:44Z
dc.date.available2015-05-04T15:20:44Z
dc.date.issued2015-05-04
dc.identifier.urihttp://hdl.handle.net/1974/13050
dc.descriptionThesis (Ph.D, Chemistry) -- Queen's University, 2015-05-01 18:13:38.967en
dc.description.abstractDimeric rhodium N-heterocyclic carbene (NHC) complexes [Rh(NHC)(C2H4)Cl]2 react with a variety of other neutral donors to form heteroleptic complexes [(L)Rh(NHC)(C2H4)Cl] (L = phosphine, pyridine) or [(L)Rh(NHC)Cl] (L = 2,2’-bipyridine (bipy), 1,10-phenanthroline (phen)). The reactivity of the resulting complexes towards O2 was investigated. In particular, [(bipy)Rh(NHC)Cl] and [(phen)Rh(NHC)Cl] resulted in RhIII peroxo complexes. In contrast, [Rh(NHC)2(O2)Cl] display particularly short O-O bond lengths and are described as singlet oxygen species. Interestingly, the mode in which O2 binds is associated with the coordination number about the transition metal complex, which is related to its reducing power. [Rh(IPr)(C2H4)Cl]2 reacts with phenyl pyridine derivatives at room temperature resulting in formal C-H activations. Upon the treatment of phenyl pyridine with pinacol borane (HBPin) in the presence of a weak base and a catalytic amount of [Rh(IPr)(C2H4)Cl]2, C-H borylated products were obtained in high yield and selectivity. The borylated products can then be used as substrates in the palladium catalyzed Suzuki-Miyaura cross coupling with aryl halides. 1,2,3-Triazole mesoionic carbene (tMIC) ligands were generated upon treatment of corresponding triazolium salts with strong bases, and can be trapped in the presence of a transition metal. The synthesis of Ag-tMIC complexes proceeds by a facile and mild route upon treatment of the triazolium salt with Ag2O. The resulting Ag-tMIC complexes undergo facile transmetallation to both Pd and Rh under very mild conditions resulting in air and moisture stable metal complexes. Triazolium salts can further be metallated to Pd in the presence of weak bases, and the resulting Pd-tMIC complexes are active catalysts in the Mizoroki-Heck reaction with aryl iodides. Benzylic trifluoromethyl sulfones are competent electrophilic substrates in palladium catalyzed cross coupling reactions, resulting in the formation of triarylmethanes in high yields under mild conditions. These substrates are conveniently synthesized and are highly reactive starting materials with phenyl boronic acids in the presence of a Pd-NHC catalyst. The structure of the Pd-NHC precatalyst is crucial, as only [(NHC)Pd(allyl)Cl] type complexes appear to be effective. These complexes can be conveniently synthesized upon the treatment of the corresponding imidazolium salt with a strong base and [Pd(allyl)Cl]2.en_US
dc.languageenen
dc.language.isoenen_US
dc.relation.ispartofseriesCanadian thesesen
dc.rightsQueen's University's Thesis/Dissertation Non-Exclusive License for Deposit to QSpace and Library and Archives Canadaen
dc.rightsProQuest PhD and Master's Theses International Dissemination Agreementen
dc.rightsIntellectual Property Guidelines at Queen's Universityen
dc.rightsCopying and Preserving Your Thesisen
dc.rightsCreative Commons - Attribution - CC BYen
dc.rightsThis publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.en
dc.subjectOrganometallicen_US
dc.subjectInorganicen_US
dc.subjectOrganicen_US
dc.subjectCatalysisen_US
dc.titleN-Heterocyclic and Mesoionic Carbene Complexes of Rhodium and Palladium: Coordination Chemistry and Catalysisen_US
dc.typeThesisen_US
dc.description.degreePh.Den
dc.contributor.supervisorCrudden, Cathleen M.en
dc.contributor.departmentChemistryen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record