Queen's University - Utility Bar

QSpace at Queen's University >
Graduate Theses, Dissertations and Projects >
Queen's Graduate Theses and Dissertations >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1974/1321

Title: Streaming Random Forests
Authors: Abdulsalam, Hanady

Files in This Item:

File Description SizeFormat
Thesis_hanady.pdf1.16 MBAdobe PDFView/Open
Keywords: Data mining
Classification algorithms
Streaming algorithms
Issue Date: 2008
Series/Report no.: Canadian theses
Abstract: Recent research addresses the problem of data-stream mining to deal with applications that require processing huge amounts of data such as sensor data analysis and financial applications. Data-stream mining algorithms incorporate special provisions to meet the requirements of stream-management systems, that is stream algorithms must be online and incremental, processing each data record only once (or few times); adaptive to distribution changes; and fast enough to accommodate high arrival rates. We consider the problem of data-stream classification, introducing an online and incremental stream-classification ensemble algorithm, Streaming Random Forests, an extension of the Random Forests algorithm by Breiman, which is a standard classification algorithm. Our algorithm is designed to handle multi-class classification problems. It is able to deal with data streams having an evolving nature and a random arrival rate of training/test data records. The algorithm, in addition, automatically adjusts its parameters based on the data seen so far. Experimental results on real and synthetic data demonstrate that the algorithm gives a successful behavior. Without losing classification accuracy, our algorithm is able to handle multi-class problems for which the underlying class boundaries drift, and handle the case when blocks of training records are not big enough to build/update the classification model.
Description: Thesis (Ph.D, Computing) -- Queen's University, 2008-07-15 16:12:33.221
URI: http://hdl.handle.net/1974/1321
Appears in Collections:Queen's Graduate Theses and Dissertations
School of Computing Graduate Theses

Items in QSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


  DSpace Software Copyright © 2002-2008  The DSpace Foundation - TOP