• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Carbon Sequestration Through the Production of Precipitated Calcium Carbonate From Waste Concrete

    Thumbnail
    View/Open
    Vanderzee_Sterling_SS_201604_MES.pdf (3.304Mb)
    Date
    2016-04-20
    Author
    Vanderzee, Sterling
    Metadata
    Show full item record
    Abstract
    As a result of human activities, rising concentrations of atmospheric carbon dioxide (CO2) are causing climate change. One method to sequester CO2 involves the production of synthetic limestone (CaCO3) from calcium silicate minerals and CO2 via mineral carbonation. Certain grades of CaCO3, including Precipitated Calcium Carbonate (PCC), are sold as a filler and pigment to several industries. Therefore, if marketable as PCC, the production of CaCO3 via mineral carbonation may be an economical method to help mitigate climate change. The global market for PCC offers the potential to utilize several million tonnes of CO2 per year. Waste cement is a suitable source material for PCC production via mineral carbonation and can be recovered from waste concrete as a byproduct of aggregate recycling practices.

    The objective of this research was to investigate the possibility of sequestering CO2 by producing PCC via the recovery and carbonation of waste cement calcium. An acid (HCl) was used to allow the complete leaching of calcium, and so the dissolved calcium could be separated from the residual material via filtration to enable PCC recovery. A purification step via pH adjustment preferentially precipitated co-leached impurities such as iron and silicon. CaCO3 precipitation was later induced by adding Na2CO3 that can be produced by the absorption of CO2 from flue gases or the atmosphere (air capture) using NaOH. HCl and NaOH can be recycled via bipolar membrane electrodialysis. Although this method may require over twice the energy of the conventional PCC manufacturing process, low carbon electricity can be used and negative process emissions are currently feasible in multiple Canadian provinces. Lower energy carbonation methods could be used where stationary sources of concentrated CO2 are located, however air capture is possible and the use of HCl and a purification step allows for the complete carbonation and utilization of waste cement calcium. This minimizes emissions from hauling residues and may ensure that significantly more CO2 is absorbed by the waste cement than would otherwise be passively absorbed by the material over several decades of atmospheric exposure.
    URI for this record
    http://hdl.handle.net/1974/14239
    Collections
    • Queen's Graduate Theses and Dissertations
    • School of Environmental Studies Graduate Theses
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    Related items

    Showing items related by title, author, creator and subject.

    • An Injectable Hydrophobic Delivery Formulation Based on Poly(Trimethylene Carbonate) for Therapeutic Angiogenesis 

      Mohajeri, Sara
      The aim of this thesis was to determine the feasibility of an injectable delivery formulation based on low molecular weight poly(trimethylene carbonate) (PTMC) for localized delivery of vascular endothelial growth factor ...
    • An Isotopic Analysis of Holocene Cool Water Carbonate Grains of the Lacepede Shelf, South Australia 

      Rouse, Jordan (2014-04-16)
      The majority of studies on carbonate sediment have been completed on tropical and sub-tropical deposits, with relatively little research undertaken on cool water systems. These sediments characterize a significant portion ...
    • Soil carbon and nitrogen dynamics along replicated chronosequences of abandoned agricultural lands in southeastern Ontario 

      Foote, Robyn Louise (2007-12-20)
      Widespread abandonment of agricultural land has occurred in northeastern North America over the past two centuries. Soil carbon often increases as sites naturally regenerate towards perennial grasslands or forests. ...

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV