• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Scanning Optical Imaging and Stress Tests of Polymer Light-Emitting Electrochemical Cells

    Thumbnail
    View/Open
    Thesis document, Faleh AlTal (9.554Mb)
    Author
    Altal, Faleh
    Metadata
    Show full item record
    Abstract
    Polymer light-emitting electrochemical cells (PLECs) were tested by means of bias stress, luminescent imaging and optical scanning probing. These cells were characterized in terms of the effect of doping on the operational lifetime of the cells, the electronic structure of the pn junctions formed in the cells and the average doping levels in the cells.

    The lifetime performance of sandwich cells was compared in operation with intermediate storage time and in continuous operation. The cells that were stressed intermittently were more prone to black spots degradation than the cells in continuous operation when the total stress time was the same. However, the black spots vanished in the cells’ idle time, which shows that these spots are local highly doped regions. The appearance of the black spots was strongly associated with the storage of the cell in the presence of the aluminum cathode.

    The doping in planar PLECs was investigated by optical beam induced current (OBIC) and photoluminescence (PL) scanning using a focused laser beam. Both p-n and p-i-n PLEC junctions were identified and the junction widths were extracted. The widths were as small as 0.21% of the cell size being the smallest width identified for PLECs and light-emitting electrochemical cells (LECs), in general. Exposing the cells to relaxation (de-doping) cycles resulted in shrinkage in the depletion region width, contrary to what is expected. This suggests the presence of submicron structures in the as-activated cells that disappeared after relaxation. In addition, it was observed that relaxation caused a p-i-n junction to emerge from the as-activated p-n junction. The junction doping level was extracted from the OBIC data and was validated via drift diffusion calculations. The calculations showed PLEC doping levels in the range of 10E14 cm^-3 – 10E15 cm^-3 in the junction region.

    The average doping level in planar PLECs was measured by stress-discharge tests. The measurement offered validation for the used method to estimate PLEC doping levels by integrating the activation charge up to the junction formation. The measurement revealed average doping levels of 10E19 cm^-3 - 10E20 cm^-3, which is much higher than doping levels determined for the junction.
    URI for this record
    http://hdl.handle.net/1974/15642
    Collections
    • Department of Physics, Engineering Physics and Astronomy Graduate Theses
    • Queen's Graduate Theses and Dissertations
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV