• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Automated Capacity Planning and Support for Enterprise Applications

    Thumbnail
    View/Open
    Thakkar_Dharmesh_B_200901_MSc.pdf (1.291Mb)
    Date
    2009-02-02
    Author
    Thakkar, Dharmesh
    Metadata
    Show full item record
    Abstract
    Capacity planning is crucial for successful development of enterprise applications. Capacity planning activities are most consequential during the verification and maintenance phases of Software Development Life Cycle. During the verification phase, analysts need to execute a large number of performance tests to build accurate performance models. Performance models help customers in capacity planning for their deployments. To build valid performance models, the performance tests must be redone for every release or build of an application. This is a time-consuming and error-prone manual process, which needs tools and techniques to speed up the process. In the maintenance phase, when customers run into performance and capacity related issues after deployment, they commonly engage the vendor of the application for troubleshooting and fine tuning of the troubled deployments. At the end of the engagement, analysts create engagement report, which contain valuable information about the observed symptoms, attempted workarounds, identified problems, and the final solutions. Engagement reports are stored in a customer engagement repository. While information stored in the engagement reports is valuable in helping analysts with future engagements, no systematic techniques exist to retrieve relevant reports from such a repository.

    In this thesis we present a framework for the systematic and automated building of capacity calculators during software verification phase. Then, we present a technique to retrieve relevant reports from a customer engagement repository. Our technique helps analyst fix performance and capacity related issues in the maintenance phase by providing easy access to information from relevant reports. We demonstrate our contributions with case studies on an open-source benchmarking application and an enterprise application.
    URI for this record
    http://hdl.handle.net/1974/1692
    Collections
    • School of Computing Graduate Theses
    • Queen's Graduate Theses and Dissertations
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV