• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Gating of Long-Term Potentiation (LTP) in the Thalamocortical Auditory System of Rats by Serotonergic (5-HT) Receptors

    Thumbnail
    View/Open
    MSc Thesis (1.709Mb)
    Author
    Lee, Karen
    Metadata
    Show full item record
    Abstract
    The neuromodulator serotonin (5-hydroxytryptamine, 5-HT) plays an important role in controlling the induction threshold and maintenance of long-term potentiation (LTP) in the visual cortex and hippocampus of rodents. Serotonergic fibers also innervate the rodent primary auditory cortex (A1), but the regulation of A1 plasticity by 5-HT receptors (5-HTRs) is largely uncharted. Thus, we examined the role of several, predominant 5-HT receptor classes (5-HT1ARs, 5-HT2Rs, and 5-HT3Rs) in gating in vivo LTP induction at A1 synapses of adult, urethane-anesthetized rats. Theta-burst stimulation (TBS) applied to the medial geniculate nucleus resulted in successful LTP induction of field postsynaptic potential generated by excitation of thalamocortical and intracortical A1 synapses. Local application (by reverse microdialysis in A1) of the broad-acting 5-HTR antagonist methiothepin suppressed LTP at both thalamocortical and intracortical synapses, an effect that was mimicked by the selective 5-HT2R antagonist ketanserin, but not the 5-HT1AR blocker WAY 100635. Interestingly, antagonism of 5-HT3Rs by granisetron selectively blocked LTP at thalamocortical, but not intracortical A1 synapses. Further, in the absence of TBS delivery, granisetron application resulted in a pronounced increase in fPSP amplitude, suggesting that 5-HT3Rs play an important role in regulating baseline (non-potentiated) transmission at A1 synapses. Together, these results indicate that activation of 5-HT2Rs and 5-HT3Rs, but not 5-HT1ARs, exerts a clear effect on LTP induction at A1 synapses, allowing 5-HT to act as a powerful regulator of long-term plasticity induction in the fully matured A1 of mammalian species.
    URI for this record
    http://hdl.handle.net/1974/22745
    Collections
    • Department of Psychology Graduate Theses
    • Queen's Graduate Theses and Dissertations
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV