Show simple item record

dc.contributor.authorTraer, Jaryden
dc.date.accessioned2018-08-15T00:23:36Z
dc.date.available2018-08-15T00:23:36Z
dc.identifier.urihttp://hdl.handle.net/1974/24434
dc.description.abstractThe ever increasing demand for high speed transport is causing a massive increase in the amount of passengers utilizing air travel. To be able to meet the ever increasing regulatory demands for reduced emissions that are being placed on the air travel industry, there exists an ever present need to advance their technology at an incredible pace. This leads to development and use of the most cutting edge and advanced technologies available, such as Topology Optimization and Additive Manufacturing. Challenges still remain in being able to effectively utilize these technologies as they are both relatively new, however integrating the two together has massive potential for the air travel industry to meet and exceed the emissions regulations. This work presents the methodology for developing a high fidelity mesoscale simulation of the additive manufacturing process which considers all aspects of the machines and the process parameters involved with the construction of components, including the effects of powder bed, Gaussian laser distributions, and specific laser movements. The methodology utilizes the element birth and death finite element formulation to simulate the addition of layers over time and also performs a full transient thermo-mechanical simulation to capture both the temperature history related to the moving heat source, as well as the effect of the temperature history on the residual stress and deformation that is inherent in components generated through additive manufacturing. The methodology was validated by comparing in-situ temperature measurements to the simulation data and was deemed acceptable by achieving 15% error throughout the process. The final stage of this work involved a parameter analysis to capture the effects of the parameters on the residual stress and deformation. Results showed agreement with other literature results, and provided trends that shed some light on the uncertainty of the AM process in hopes of providing recommendations for the development of a methodology for large scale process modeling.en
dc.language.isoengen
dc.relation.ispartofseriesCanadian thesesen
dc.rightsQueen's University's Thesis/Dissertation Non-Exclusive License for Deposit to QSpace and Library and Archives Canadaen
dc.rightsProQuest PhD and Master's Theses International Dissemination Agreementen
dc.rightsIntellectual Property Guidelines at Queen's Universityen
dc.rightsCopying and Preserving Your Thesisen
dc.rightsThis publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.en
dc.subjectAdditive Manufacturingen
dc.subjectResidual Stressen
dc.subjectParameter Analysisen
dc.subjectMesoscale Modelingen
dc.subjectFinite Element Analysisen
dc.subjectANSYSen
dc.subjectElement Birth and Deathen
dc.subjectGaussian Laser Distributionen
dc.subjectPowder Bed Laser Scanningen
dc.titleHigh Fidelity Additive Manufacturing Process Modeling for Residual Stress and Deformationen
dc.typethesisen
dc.description.degreeM.A.Sc.en
dc.contributor.supervisorKim, Il Yongen
dc.contributor.departmentMechanical and Materials Engineeringen
dc.degree.grantorQueen's University at Kingstonen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record