• Login
    View Item 
    •   Home
    • Scholarly Contributions
    • Physics, Engineering Physics and Astronomy, Department of
    • Department of Physics, Engineering Physics and Astronomy Faculty Publications
    • View Item
    •   Home
    • Scholarly Contributions
    • Physics, Engineering Physics and Astronomy, Department of
    • Department of Physics, Engineering Physics and Astronomy Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Transfer of chirality from light to a Disperse Red 1 molecular glass surface

    Thumbnail
    View/Open
    Main article published in Optics Letters (1.042Mb)
    Date
    2017-08-30
    Author
    Mazaheri, Leila
    Lebel, Olivier
    Nunzi, Jean-Michel
    Metadata
    Show full item record
    Abstract
    Chiral structures and materials interact with light in well-documented ways, but light can also interact with achiral materials to generate chirality by inscribing its asymmetric configuration on photoresponsive materials, such as azobenzene derivatives. While it is possible to thusly generate both bidimensional (2D) and tridimensional (3D) chirality, 2D chirality is especially

    attractive because of its non-reciprocity. Herein, 2D chirality is induced on the surface of a glass-forming Disperse Red 1 derivative by irradiation with a single laser beam, yielding crossed spontaneous surface relief gratings (SSRG) with different pitches. Azimuth rotations up to 10° have been observed, and the absence of 3D chirality has been confirmed. This method thus allows generating non-reciprocal planar chiral objects by a simple, single irradiation process on a thin film of a material that can easily be processed over large areas or onto small objects.
    URI for this record
    http://hdl.handle.net/1974/27445
    External DOI
    https://doi.org/10.1364/OL.42.004845
    Collections
    • Department of Physics, Engineering Physics and Astronomy Faculty Publications
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV