• Login
    View Item 
    •   Home
    • Scholarly Contributions
    • Chemical Engineering, Department of
    • Department of Chemical Engineering Faculty Publications
    • View Item
    •   Home
    • Scholarly Contributions
    • Chemical Engineering, Department of
    • Department of Chemical Engineering Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Fundamentals of Electrochemical CO2 Reduction on Single-Metal-Atom Catalysts

    Thumbnail
    View/Open
    Accepted Author Manuscript (3.840Mb)
    Date
    2020-08-06
    Author
    Nguyen, Tu N.
    Salehi, Mahdi
    Le, Quyet Van cc
    Seifitokaldani, Ali cc
    Dinh, Cao-Thang
    Metadata
    Show full item record
    Abstract
    Electrochemical carbon dioxide (CO2) reduction powered by renewable electricity offers a path to produce valuable products from CO2 —this earth-scale human waste— and to store intermittent renewable energy in the form of chemical fuels. Recently, single metal atoms (SMAs) immobilized on a conductive substrate have been shown as effective catalysts for the electrochemical CO2 reduction, opening the door to a new generation of low-cost and high-performance catalysts for fuel and chemical production. The unique physical and chemical properties of a single-atomic structure, the homogeneity of the active sites, combined with tunable coordination environment are essential for realizing highly active and selective catalysts. In this review, we focus on the structure-performance relationship in SMA catalysts for CO2 reduction from both theoretical and experimental aspects. We discuss why SMA catalysts exhibit distinct catalytic performance compared to their counterpart nanoparticles. Recent strategies for improving the CO2 reduction selectivity and activity by tuning the nature and coordination environment of SMA active sites are described. Finally, we highlight potential applications of SMA catalysts in practical CO2 reduction conditions, critical challenges and the path toward efficient electrochemical CO2 reduction catalysis based on SMAs.
    URI for this record
    http://hdl.handle.net/1974/27994
    External DOI
    https://doi.org/10.1021/acscatal.0c02643
    Collections
    • Department of Chemical Engineering Faculty Publications
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV