• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Simulations of Scale-Free Cosmologies for the Small-Scale Cold Dark Matter Universe

    Thumbnail
    View/Open
    Elahi_Pascal_J_200909_PhD.pdf (4.111Mb)
    Date
    2009-09-26
    Author
    Elahi, Pascal
    Metadata
    Show full item record
    Abstract
    Cosmological simulations show that dark matter halos contain a wealth of substructure. These subhalos are assumed have a mass distribution that extends down to the smallest mass in the Cold Dark Matter (CDM) hierarchy, which lies below the current resolution limit of simulations. Substructure has important ramifications for indirect dark matter detection experiments as the signal depends sensitively on the small-scale density distribution of dark matter in the Galactic halo. A clumpy halo produces a stronger signal than halos where the density is a smooth function of radius.

    However, the small-scale Universe presents a daunting challenge for models of structure formation. In the CDM paradigm, structures form in a hierarchical fashion, with small-scale perturbations collapsing first to form halos that then grow via mergers. However, near the bottom of the hierarchy, dark matter structures form nearly simultaneously across a wide range of scales.

    To explore these small scales, I use a series of simulations of scale-free cosmological models, where the initial density power spectrum is a power-law. I can effectively examine various scales in the Universe by using the index in these artificial cosmologies as a proxy for scale. This approach is not new, but my simulations are larger than previous such simulations by a factor of 3 or more.

    My results call into question the often made assumption that the subhalo population is scale-free. The subhalo population does depend on the mass of the host. By combining my study with others, I construct a phenomenological model for the subhalo mass function. This model shows that the full subhalo hierarchy does not greatly boost the dark matter annihilation flux of a host halo. Thus, the enhancement of the Galactic halo signature due to substructure can not alone account the observed flux of cosmic rays produced by annihilating dark matter.

    Finally, I examine the nonlinear power spectrum, which is used to determine cosmological parameters based on large-scale, observational surveys. I find that in this nonlinear regime, my results are not consistent with currently used fitting formulae and present my own empirical formula.
    URI for this record
    http://hdl.handle.net/1974/5219
    Collections
    • Queen's Graduate Theses and Dissertations
    • Department of Physics, Engineering Physics and Astronomy Graduate Theses
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV