• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Cardiac hypertrophy and expression of the natriuretic peptide system in genetic models of heme oxygenase-1

    Thumbnail
    View/Open
    Armstrong_David _WJ_201010_MSc.pdf.pdf (1.200Mb)
    Date
    2009-10-20
    Author
    Armstrong, David
    Metadata
    Show full item record
    Abstract
    Objective: Heme oxygenase-1 (HO-1) has been well established as a cytoprotective molecule, and has been shown to exert cardioprotective effects in both hypertension and cardiac hypertrophy. However, the precise mechanism of the cardioprotective effect of HO-1 has yet to be fully elucidated. The natriuretic peptide system (NPS) is also a key player in cardiovascular homeostasis and tissue dynamics, and has also been shown to be cardioprotective in a variety of pathologic conditions. This study examined the effect of high dietary salt treatment in genetic models of HO-1, and assessed the expression of the NPS in the left ventricle (LV), in order to gain insight into the relationship between varying levels of HO-1 expression with the development of cardiac hypertrophy and the expression of the NPS. Methods: Age-matched 12-week old male HO-1 knockout (HO-1-/-) and HO-1 cardiomyocyte-specific transgenic overexpressing (HO-1Tg) mice were treated with either normal salt (NS; 0.8%) or high salt (HS; 8.0%) chow for 5 weeks. LV mRNA expression was determined using quantitative real-time RT-PCR. Results: HO-1-/- mice fed HS diet had significantly higher left ventricle-to-body weight ratio (LV/BW) compared to HO-1+/+ mice fed NS diet. HO-1-/- mice had significantly reduced expression of the NPS compared to controls, and these mice did not exhibit a salt-induced increase in ANP expression. HS treatment had no effect on LV/BW in HO-1Tg mice compared to controls. HO-1Tg mice had significantly higher ANP and BNP expression compared to controls. Conclusions: The presence of HO-1 is required for normal salt-induced changes in the local cardiac NPS. HO-1 ablation resulted in significantly lower mRNA expression of the NPS, whereas HO-1 overexpression resulted in higher mRNA expression of the NPS. These data indicate that the detrimental effect of reduced HO-1 expression and the cardioprotective effect of increased HO-1 expression may be due, in part, to altered expression of the NPS.
    URI for this record
    http://hdl.handle.net/1974/5279
    Collections
    • Queen's Graduate Theses and Dissertations
    • Anatomy and Cell Biology Graduate Theses (July 2007 - Sept 2016)
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV