• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Automatic Urban Modelling using Mobile Urban LIDAR Data

    Thumbnail
    View/Open
    Ioannou_Yani_Andrew_201002_MSc.pdf (67.82Mb)
    Date
    2010-03-01
    Author
    Ioannou, Yani Andrew
    Metadata
    Show full item record
    Abstract
    Recent advances in Light Detection and Ranging (LIDAR) technology and integration

    have resulted in vehicle-borne platforms for urban LIDAR scanning, such as Terrapoint Inc.'s TITAN system. Such technology has lead to an explosion in ground LIDAR data. The large size of such mobile urban LIDAR data sets, and the ease at which they may now be collected, has shifted the bottleneck of creating abstract urban models for Geographical Information Systems (GIS) from data collection to data processing. While turning such data into useful models has traditionally relied on human analysis, this is no longer practical.

    This thesis outlines a methodology for automatically recovering the necessary

    information to create abstract urban models from mobile urban LIDAR data using

    computer vision methods. As an integral part of the methodology, a novel scale-based interest operator is introduced (Di erence of Normals) that is e cient enough to process large datasets, while accurately isolating objects of interest in the scene according to real-world parameters.

    Finally a novel localized object recognition algorithm is introduced (Local Potential Well Space Embedding), derived from a proven global method for object recognition (Potential Well Space Embedding). The object recognition phase of our methodology is discussed with these two algorithms as a focus.
    URI for this record
    http://hdl.handle.net/1974/5443
    Collections
    • Queen's Graduate Theses and Dissertations
    • School of Computing Graduate Theses
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV