• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Scaling of Metabolic Enzymes: Transcriptional Basis of Interspecies Variation in Mitochondrial Content

    Thumbnail
    View/Open
    Genge_Christine_E_201006_MSc.pdf (2.040Mb)
    Date
    2010-06-15
    Author
    Genge, Christine E.
    Metadata
    Show full item record
    Abstract
    Mitochondrial content, an important determinant of muscle metabolic capacity, changes in individuals during development, and in response to physiological and environmental challenges. This phenotypic plasticity is attributed to the coactivator PPARγ coactivator-1α (PGC-1α) but it remains unclear if this transcriptional regulator accounts for evolutionary variation in mitochondrial content. In an attempt to explain why some species have higher muscle mitochondrial enzyme levels than other species, I examined if the transcriptional mechanisms that control mitochondrial content of a tissue in an individual are also responsible for differences between species. If PGC-1α creates differences between the mitochondrial content of species based on variation in promoter binding motifs, then cis-factor evolution may be the guiding force in scaling trends.

    In this thesis I explored the basis of size-dependent patterns by looking at layers of regulation, from catalytic activities to promoter evolution and regulation. A representative family, Rodentia, was used to collect muscle samples from a size range of approximately 20g up to 17 kg. As expected, in rodent lower limb muscles, mitochondrial and glycolytic enzyme activity exhibited reciprocal scaling patterns, though the scope differed between muscles. Very little of the variation was accounted for when the activity was related to DNA content. However, when COX activities were expressed relative to DNA, the scaling patterns were similar among the 3 muscles. To determine if interspecies differences were linked to transcriptional regulation, ~800bp of the PGC-1α promoter from 56 terrestrial mammals (5g-5000kg) was examined. The basal placental mammalian promoter possesses putative elements for Sp1, HNF3, myogenic factors and metabolic effectors, which have been retained in mammals with little change in order or spacing. To investigate the ability of these promoters to control PGC-1α expression, rodent promoters were cloned into luciferase reporter gene constructs and transfected into a common mouse myoblast background (Sol8 cells). Unlike mitochondrial content, promoter activity did not vary with body size across the rodent family. Likewise, PGC-1α transcript levels did not vary in rodent muscles in a way that would explain differences in COX activity. This suggests that though PGC-1α may be crucial for within species variation, transcriptional regulation of PGC-1α is not responsible for interspecies variation in mitochondrial content.
    URI
    http://hdl.handle.net/1974/5710
    Collections
    • Queen's Graduate Theses and Dissertations
    • Department of Biology Graduate Theses
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV