Show simple item record

dc.contributor.authorPhilippson, Jeffrey
dc.contributor.otherQueen's University (Kingston, Ont.). Theses (Queen's University (Kingston, Ont.))en
dc.date2012-01-31 11:30:22.479en
dc.date.accessioned2012-01-31T21:59:32Z
dc.date.available2012-01-31T21:59:32Z
dc.date.issued2012-01-31
dc.identifier.urihttp://hdl.handle.net/1974/6990
dc.descriptionThesis (Ph.D, Physics, Engineering Physics and Astronomy) -- Queen's University, 2012-01-31 11:30:22.479en
dc.description.abstractExperimental and theoretical investigations of highly-excited molecules are presented that advance the current state of knowledge of intramolecular interactions in highly-excited molecular states. A quantitative analysis of intramolecular interactions in excited hydrogen fluoride is presented, in which the rotational levels of the B singlet-Sigma+, v = 29 vibronic level are shown to mix with the corresponding e-parity components of the C singlet-Pi, v = 0 level. Extrapolating the experimentally-derived mixing parameter to the unperturbed limit reveals an unperturbed value of the aF hyperfine parameter of 4132(25) MHz. Coupling energies between the ion-pair curve and long-range asymptotes of covalent states are calculated for a large number of alkali–alkali collision channels, revealing the dependence on the internuclear distance at which the crossing takes place and forming a foundational step for the calculation of cross-sections and rate coefficients for different charge-exchange and other processes. To advance the experimental investigation of these systems, optical instrumentation and associated control systems have been designed and constructed for cooling and trapping lithium in preparation for experimental studies of cold-collisions that will be informed by, and ultimately a test of, some of these calculated ionic–covalent coupling energies. A novel scheme for systematic optimization of peak-locking has been developed and implemented, providing a rigorous assessment of the optimal experimental parameters. A side-of-filter offset-locking scheme was implemented, characterizing and correcting for a previously unexplained offset in the error-signal. A novel calibrated polarimetry scheme is demonstrated, correcting for the primary sources of uncertainty relating to manufacturing tolerances and experimental errors. The calibrated set of polarization measurements is used to examine the purity of the optical polarization state in the light sources to be used for trapping lithium.en_US
dc.languageenen
dc.language.isoenen_US
dc.relation.ispartofseriesCanadian thesesen
dc.rightsThis publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.en
dc.subjectatomic collisionsen_US
dc.subjectRydberg statesen_US
dc.subjectlaser coolingen_US
dc.subjectpolarimetryen_US
dc.subjectmolecular physicsen_US
dc.subjectcharge transferen_US
dc.titleExperimental and Theoretical Studies of Highly-Excited Molecules at a Wide Range of Internuclear Distancesen_US
dc.typethesisen_US
dc.description.degreePh.Den
dc.contributor.supervisorShiell, Ralphen
dc.contributor.supervisorFraser, James M.en
dc.contributor.departmentPhysics, Engineering Physics and Astronomyen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record