Show simple item record

dc.contributor.authorNajafi Yazdi, Mohsen
dc.contributor.otherQueen's University (Kingston, Ont.). Theses (Queen's University (Kingston, Ont.))en
dc.date2012-03-29 13:52:10.874en
dc.date.accessioned2012-03-29T18:16:26Z
dc.date.available2012-03-29T18:16:26Z
dc.date.issued2012-03-29
dc.identifier.urihttp://hdl.handle.net/1974/7039
dc.descriptionThesis (Master, Electrical & Computer Engineering) -- Queen's University, 2012-03-29 13:52:10.874en
dc.description.abstractUltrasound-based tissue characterization has been an active eld of cancer detection in the past decades. The main concept behind various techniques is that the returning ultrasound echoes carry tissue-dependent information that can be used to distinguish tissue types. Recently, a new paradigm for tissue typing has been proposed which uses ultrasound Radio Frequency (RF) echoes, recorded continuously from a xed location of the tissue, to extract tissue-dependent information. This is hereafter referred to as RF time series. The source of tissue typing information in RF time series is not a well known concept in the literature. However, there are two main hypotheses that describe the informativeness of variations in RF time series. Such information could be partly due to heat induction as a result of consistent eradiation of tissue with ultrasound beams which results in a virtual displacement in RF echoes, and partly due to the acoustic radiation force of ultrasound beams resulting in micro-vibration inside tissue. In this thesis, we further investigate RF time series signals, collected at high frequencies, by analyzing the properties of the RF displacements. It will be shown that such displacements exhibit oscillatory behavior, emphasizing on the possible micro-vibrations inside tissue, as well as linear incremental trend, indicating the e ect of heat absorbtion of tissue. i The main focus of this thesis is to study the oscillatory behavior of RF displace- ments in order to extract tissue-dependent features based on which tissue classi ca- tion is performed. Using various linear and nonlinear tools, we study the properties of such displacements in both frequency and time domain. Nonlinear analysis, based on the theory of dynamical systems, is used to study the dynamical and geometrical properties of RF displacements in the time domain. Using Support Vector Machine (SVM), di erent tissue typing experiments are performed to investigate the capability of the proposed features in tissue classi ca- tion. It will be shown that the combination of such features can distinguish between di erent tissue types almost perfectly. In addition, a feature reduction algorithm, based on principle component analysis (PCA), is performed to reduce the number of features required for a successful tissue classi cation.en_US
dc.language.isoengen_US
dc.relation.ispartofseriesCanadian thesesen
dc.rightsThis publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.en
dc.subjectRF Time Seriesen_US
dc.subjectHigh Frequency Ultrasounden_US
dc.subjectTissue Characterizationen_US
dc.titleHigh Frequency Ultrasound RF Time Series Analysis for Tissue Characterizationen_US
dc.typethesisen_US
dc.description.degreeMasteren
dc.contributor.supervisorAbolmaesumi, Purangen
dc.contributor.supervisorMousavi, Parvinen
dc.contributor.departmentElectrical and Computer Engineeringen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record