• Login
    View Item 
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    •   Home
    • Graduate Theses, Dissertations and Projects
    • Queen's Graduate Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Three-Dimensional Modelling of Lake Ontairo Hydrodynamics Near Port Hope and in the Upper St Lawrence River

    Thumbnail
    View/Open
    Paturi_Shastri_NM_201307_PhD.pdf (16.12Mb)
    Date
    2013-07-18
    Author
    Paturi, Shastri
    Metadata
    Show full item record
    Abstract
    The Ontario Clean Water Act (2006) mandated that eight and two municipal drinking water intakes in the Cataraqui Region Conservation Authority (CRCA) and the Ganaraska River Source Protection Agency (GRSPA) jurisdictions respectively, be protected from contaminants released into the surrounding waters through the delineation of Intake Protection Zones (IPZs).

    Toward these objectives, the Estuary and Lake Computer Model (ELCOM) was applied to simulate the hydrodynamics and contaminant transport in the eastern Lake Ontario and upper St. Lawrence River. Model hydrodynamics were comprehensively validated against field data collected during April-October, 2006. The flow was found to be predominantly wind induced in the southwestern lacustrine portion of the domain and hydraulically driven in the northeastern riverine portion with storm events resulting in river flow reversals. The modeled surface currents were applied to delineate IPZs surrounding the drinking water intakes. Passive tracers were simulated as surrogates for combined sewer outflows, tributary flows, municipal/wastewater and industrial discharges identified by CRCA as threats to drinking water intakes. Wind was found to be the most dominant forcing to transport contaminants, both in the Kingston Basin and the St. Lawrence River, whereas the St. Lawrence River outflow was found to influence the transport of contaminants along the river.

    The hydrodynamics and contaminant transport in the near-shore region of Lake Ontario, from Port Hope to Cobourg was also simulated using ELCOM and the results were comprehensively validated against field data collected during April-September, 2010. Upwelling and downwelling events caused by south-westerly and north-easterly winds were found to be the predominant hydrodynamic process. These events generated barotropic geostrophic alongshore currents or ‘coastal jets’ of ~20 cm s-1. Discharges from river plumes and sewage treatment plants were simulated as tracer releases.

    The tracer concentrations were primarily influenced by the close proximity of the intakes to the effluent release points, the volume and direction of the discharge from the intakes and the physical processes driving the flow dynamics.
    URI for this record
    http://hdl.handle.net/1974/8115
    Collections
    • Queen's Graduate Theses and Dissertations
    • Department of Civil Engineering Graduate Theses
    Request an alternative format
    If you require this document in an alternate, accessible format, please contact the Queen's Adaptive Technology Centre

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV
     

     

    Browse

    All of QSpaceCommunities & CollectionsPublished DatesAuthorsTitlesSubjectsTypesThis CollectionPublished DatesAuthorsTitlesSubjectsTypes

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us
    Theme by 
    Atmire NV