Show simple item record

dc.contributor.authorRichardson, Timothyen
dc.date2013-09-24 12:36:48.352
dc.date.accessioned2013-09-24T22:30:21Z
dc.date.available2013-09-24T22:30:21Z
dc.date.issued2013-09-24
dc.identifier.urihttp://hdl.handle.net/1974/8310
dc.descriptionThesis (Master, Civil Engineering) -- Queen's University, 2013-09-24 12:36:48.352en
dc.description.abstractThis thesis investigates the application of ultra-high modulus carbon fiber reinforced polymer (CFRP) plates to strengthen damaged reinforced concrete beams and slender columns. In the first phase, two different pre-repair loading histories were simulated in seven 3000x300x150 mm reinforced concrete beams, namely cracking within the elastic range, and overloading in the plastic range. After unloading, the beams were repaired with either high- or ultra-high modulus (210 or 400 GPa) CFRP plates, or a hybrid system, and then reloaded to failure. It was shown that the level of pre-existing damage has an insignificant effect on the strengthening effectiveness and the failure mode at ultimate. The 210 and 400 GPa CFRP of reinforcement ratio ρf = 0.17% increased the ultimate strength by up to 29 and 51%, respectively, despite the 40% lower tensile strength of the 400 GPa CFRP, due to the change in failure mode from debonding to rupture. Doubling ρf of the 400 GPa CFRP to 0.34% resulted in a 63% overall gain in flexural strength, only 8% increase in ultimate strength over ρf = 0.17%, due to change in failure mode from rupture to concrete cover delamination. The beam retrofitted by hybrid CFRP showed remarkable pseudo ductility and warning signs before failure. However, a parametric study revealed a critical balance in proportioning the areas of hybrid CFRP to achieve reliable pseudo ductility. In the beam with ρf =0.34%, this was achieved using a maximum of 30% ρf of the 400 GPa CFRP. The second phase of this thesis presents an analytical model developed by modifying the provisions of the ACI 318-08 code and employing the computer software Response 2000, to predict the performance of CFRP strengthened slender reinforced concrete columns. Response 2000 is used to establish the interaction curve while the modified ACI 318-08 code is used to acquire the slender column loading path to failure including the second order effects. The model predicts that the effectiveness of the FRP strengthening system increases as the slenderness ratio and FRP reinforcement ratio increase.en
dc.language.isoengen
dc.relation.ispartofseriesCanadian thesesen
dc.rightsThis publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.en
dc.subjectdebondingen
dc.subjectExternally bonded CFRPen
dc.subjectdelaminationen
dc.subjectslendernessen
dc.subjectmodulusen
dc.subjectbucklingen
dc.subjectloading historyen
dc.titleStrengthening Damaged Reinforced Concrete Beams and Slender Columns Using Ultra-High Modulus CFRP Platesen
dc.typethesisen
dc.description.degreeM.A.Sc.en
dc.contributor.supervisorFam, Amir Z.en
dc.contributor.departmentCivil Engineeringen
dc.degree.grantorQueen's University at Kingstonen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record