Show simple item record

dc.contributor.authorXu, Kenan
dc.contributor.otherQueen's University (Kingston, Ont.). Theses (Queen's University (Kingston, Ont.))en
dc.date2008-01-15 09:33:53.917en
dc.date.accessioned2008-01-16T17:42:55Z
dc.date.available2008-01-16T17:42:55Z
dc.date.issued2008-01-16T17:42:55Z
dc.identifier.urihttp://hdl.handle.net/1974/987
dc.descriptionThesis (Ph.D, Electrical & Computer Engineering) -- Queen's University, 2008-01-15 09:33:53.917en
dc.description.abstractPlanning device deployment is a fundamental issue in implementing wireless sensor network (WSN) applications. This design practice determines types, numbers and locations of devices in order to build a powerful and effective system using devices of limited energy supply and constrained capacities. The deployment plan decides the limits of many intrinsic properties of a WSN, such as coverage, connectivity, cost, and lifetime. In this thesis, we address the device deployment planning issues related to large-scale WSN systems. We consider a typical deployment planning scenario in a heterogeneous two-tier WSN composed of sensor nodes and relay nodes. Sensor nodes form the lower tier of the network and are responsible for providing satisfactory sensing coverage to the application. Relay nodes form the upper tier of the network and they are responsible for forwarding data from sensor nodes to the base station. As so, relay nodes should provide reliable connectivity to sensor nodes for an extended period of time. We therefore address the sensor node deployment in terms of the sensing coverage and relay node deployment in terms of the communication connectivity and system lifetime. For sensor node deployment, we propose a coverage-guaranteed sensor node deployment design technique. Using this technique, the sensing coverage is complete even if sensor nodes are randomly dispersed within a bounded range from its target locations according to a given grid pattern. In order to curb the increased cost due to extra sensor nodes that are used in the coverage-guaranteed deployment, while still maintaining a high-quality sensing coverage, we further study the probabilistic properties of the grid-based sensor node deployment in the presence of deployment errors. For relay node deployment, we propose to extend the system lifetime by distributing relay nodes according to a density function, which is optimized in response to the energy consumption rate, so that the energy is dissipated at an approximately same rate across the network. We further craft the deployment density function to reconcile the needs of balanced energy consumption and strong sensor node connectivity. The techniques proposed in this thesis fill the blank of available literature and can serve as guidelines for WSN designers, solution providers and system integrators of WSN applications.en
dc.format.extent850980 bytes
dc.format.mimetypeapplication/pdf
dc.languageenen
dc.language.isoenen
dc.relation.ispartofseriesCanadian thesesen
dc.rightsThis publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.en
dc.subjectWireless sensor networken
dc.subjectDeploymenten
dc.titleDevice Deployment Strategies for Large-scale Wireless Sensor Networksen
dc.typetechnical reporten
dc.typethesisen
dc.description.degreePh.Den
dc.contributor.supervisorHassanein, Hossam S.en
dc.contributor.supervisorTakahara, Glenen
dc.contributor.departmentElectrical and Computer Engineeringen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record