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Abstract 

Quantitative methods can help us understand how underlying attributes contribute to 

movement patterns. Applying principal components analysis (PCA) to whole-body motion data 

may provide an objective data-driven method to identify unique and statistically important 

movement patterns. Therefore, the primary purpose of this study was to determine if athletesô 

movement patterns can be differentiated based on skill level or sport played using PCA. 

Motion capture data from 542 athletes performing three sport-screening movements (i.e. 

bird-dog, drop jump, T-balance) were analyzed. A PCA-based pattern recognition technique was 

used to analyze the data. Prior to analyzing the effects of skill level or sport on movement patterns, 

methodological considerations related to motion analysis reference coordinate system were 

assessed. All analyses were addressed as case-studies. 

For the first case study, referencing motion data to a global (lab-based) coordinate system 

compared to a local (segment-based) coordinate system affected the ability to interpret important 

movement features. Furthermore, for the second case study, where the interpretability of PCs was 

assessed when data were referenced to a stationary versus a moving segment-based coordinate 

system, PCs were more interpretable when data were referenced to a stationary coordinate system 

for both the bird-dog and T-balance task.  

 As a result of the findings from case study 1 and 2, only stationary segment-based 

coordinate systems were used in cases 3 and 4. During the bird-dog task, elite athletes had 

significantly lower scores compared to recreational athletes for principal component (PC) 1. For 

the T-balance movement, elite athletes had significantly lower scores compared to recreational 

athletes for PC 2. In both analyses the lower scores in elite athletes represented a greater range of 
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motion. Finally, case study 4 reported differences in athletesô movement patterns who competed 

in different sports, and significant differences in technique were detected during the bird-dog task. 

Through these case studies, this thesis highlights the feasibility of applying PCA as a 

movement pattern recognition technique in athletes. Future research can build on this proof-of-

principle work to develop robust quantitative methods to help us better understand how underlying 

attributes (e.g. height, sex, ability, injury history, training type) contribute to performance. 
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Chapter 1 

Introduction  

 Movement screens are often used to identify aberrant movement patterns that are believed 

to increase risk of injury and/or impede performance. This is accomplished by examining  

individualsô kinetics and kinematics data to evaluate the correctness and proficiency of their 

movement (Donà et al., 2009). However, movement screening remains primarily qualitative, 

meaning they are based on the visual appraisal of movement. Quantitative methods can help us 

understand how underlying attributes contribute to movement quality and patterns. Quantitative 

methods could enhance movement screening, by increasing objectivity, while creating the 

potential to detect new and important movement features that may not be easily visible to the 

human eye. This work explores the viability of a principal component analysis-based movement 

pattern recognition technique to permit an objective characterization of movement within a 

movement screening paradigm.  

Movement screens are growing in popularity amongst coaches and athletes to exploit 

aberrant movements. A commonly used quantitative movement screen is the functional movement 

screen (FMSÊ) (Functional Movement Systems, Chatham, VA, USA). The FMSÊ is a 

quantitative, subjective movement screen, meaning that athletes receive a numerical score, 

however that score is based on subjective observations. The screen is comprised of mobility and 

stability tasks that are designed to put the participant in extreme positions where, if present, 

weaknesses and imbalances can be detected. Each test is given a score by a rater, who rates each 

task based on certain grading criteria that can be seen by the human eye. However, it was recently 

found that if the participants were made aware of the grading criteria, within minutes they were 

able to significantly improve their FMSÊ score (Frost et al., 2015). This leads to the question of 
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how much the FMSÊ score is reflective of ñdysfunctionò and how much is reflective of external 

factors, such as knowledge of grading criteria. Another limitation of currently used quantitative, 

subjective movement screens is that differences between scores need to be large enough for the 

human eye to detect. Motion capture systems are able to detect differences in movements much 

smaller than can be seen and processed by a human observer and give measures that can provide 

athletes and coaches with quantitative, objective feedback.  

Quantifying movement patterns requires motion capture data. Motion capture systems are 

able to track the 3D motions of reflective markers carefully placed on the body to comprehensively 

describe the human motion. However, the comprehensive motion data are difficult to interpret on 

their own. As such, they may be reduced by characterizing the motions of specific joints of interest, 

or by applying other data reduction methods, such as principal component analysis (PCA).  The 

use of PCA for motion analysis, enabling the extraction of fundamental patterns of coordination 

of complex movements, has dramatically increased. 

 PCA is a multivariate statistical technique, which aims to reduce high-dimensional data 

sets. The PCA process identifies principal components (PCs), with the first component accounting 

for the largest possible variance and each following component descending in variance under the 

constraints of the preceding components (Abdi and Williams, 2010). If there are redundancies in 

the data, a subset of the data will explain the majority of the variance (Troje, 2002); for example, 

the first four principal components may account for 98% of the variance. Using PCA to examine 

the entire movement (i.e. all marker trajectories) can help accurately identify embedded patterns 

of complex movements.  
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 PCA-based movement pattern recognition technique used in this thesis is an extension of 

traditional PCA. For the technique used in this thesis, PCA is applied twice to subject data to 

reduce the dimensionality of motion. An initial PCA is performed to find redundant features of 

motion in order to reduce the number of parameters to be analyzed. The second PCA is performed 

to allow for comparisons to be made between athletes. The second PCA outputs principal 

components, scores, and a mean movement, in order to allow for the data to be reconstructed to 

identify the differences in movement patterns. The technique has previously been effectively used 

to detect and explain differences in gait patterns based on the participants age, sex, and feelings 

(happy/sad, nevous/relaxed) (Troje, 2002); to objectively analyze skiing technique (Federolf et al., 

2014), and to develop an objective judging tool for competitive diving (Young and 

Reinkensmeyer, 2014). The PCA-based movement pattern recognition technique was the first 

data-driven method to decompose and analyze the complex, whole-body movement of a skier 

(Federolf et al., 2014). An obvious benefit of this technique, is it is able to provide objective 

biomechanical feedback to coaches and athletes to use when planning the training of athletes 

(Federolf et al., 2014). However, a less obvious, secondary benefit of the technique is that it can 

be used to support the development of instructorsô or coachesô skills to assess an athleteôs 

movements (Federolf et al., 2014). The PCA-based movement pattern recognition technique also 

allowed researchers to characterize movement features during diving, where dive scores could be 

calculated based on how a given feature pattern related to the mean (Young and Reinkensmeyer, 

2014). The technique has been able to provide researchers, coaches, and judges a method to 

objectively assess and score movement patterns of athletes performing different movement skills.  

The technique is able to objectively detect differences in movement patterns, however, 

certain considerations need to be taken into account when using the technique. A possible concern 
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outlined by Federolf et al. (2014) was possible differences in results when relating data to different 

coordinate systems. Federolf et al. (2014) predicted that changing the reference system may result 

in changing what each PC represents. In addition, PCA is able to detect differences based on how 

the athlete is positioned relative to the global space, which is not always beneficial information. 

Therefore, which coordinate system the data should be referenced to needs to be explored. Another 

prospective concern is whether or not the technique is able to distinguish differences in athletes in 

non-cyclical, constrained movements. For the purpose of this thesis, a constrained movement is 

defined as movement that has set beginning, middle and end tasks that need to be accomplished. 

Therefore, the purposes of the current study were: 1) to address methodological considerations by 

determining differences in results when data are referenced to different reference systems when 

using PCA, and 2) to use what was learned in purpose 1 to assess the application of pattern 

recognition for differentiating whole-body movement patterns in athletes of different skill level 

and sport during non-cyclical, constrained movements using PCA. 
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Chapter 2 

Overview of Literature 

 

 The principal component analysis (PCA)-based movement pattern recognition technique 

used in this thesis approaches movement variability from the perspective of the whole-body. The 

technique allows for movement variance to be examined as a whole system, rather than as 

individual parts.  

2.1 Variability in Motion  

Human movement variability is the normal variation that occurs in motor performance 

between individuals (inter-individual variability) or across multiple repetitions within an 

individual (intra-individual variability). Traditional perspectives believe that intra-individual 

variability can be attributed to random error or noise. However, more recent perspectives believe 

that movement variability is not random, but in fact is functional and the study of the variability 

can provide meaningful insight regarding human movement. Variability in movement is thought 

to be functional in three different ways by affecting: 1) compensatory movements, 2) ability to 

adjust to the environment, and 3) risk of injury during repetitive movements (Bartlett et al., 2007). 

Moreover, variability can also be influenced by experience, and can reflect personal differences in 

technique. 

Studies targeting sporting movements provide evidence that compensatory patterns may 

emerge between athletes. In a study looking at movement variability in female basketball players 

varying in skill level from national team players to players with very little experience, skilled 

players had less variability at the elbow and wrist joints. However, there were no significant 

differences in the amount of variability in the elbow trajectory between the two groups (Button et 

al., 2003). It is believed that the variability in the elbow trajectory is a compensatory technique to 
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reduce the variability of the ballôs trajectory. Similar findings have been found by researchers 

looking at target throwing of balls and darts, tasks that require accuracy (Kudo et al., 2000; Muller 

and Loosch, 1999). When studying variability as a contributor to compensatory techniques, it has 

been found that variability in the shoulder, elbow, and wrist joints did not affect the height, angle 

or speed of release of the ball.  This suggests that compensatory mechanisms were occurring at the 

shoulder, elbow and wrist in order to minimize variability of the release parameters (height, angle 

or speed of release) (Davids and Glazier, 2010). 

Compensatory patterns may also emerge within individualsô when moving in different 

performance environments. Researchers looking at treadmill running versus over-ground running 

have found that runners have greater amounts of variability during over-ground running compared 

to treadmill running (Wheat et al., 2005). Further research investigated running on a self-propelled 

treadmill (the treadmill changes speed as the runner changes speed). Again, the runners during 

over-ground running had greater variability than when running on the self-propelled treadmill. 

This suggests that runners have greater variability while running over-ground to adjust to 

environmental factors such as uneven ground, wind and obstacles (Bartlett et al., 2007; Wheat et 

al., 2005). Therefore, it is thought that variability contributes to the functionality of being able to 

react and adjust to environmental factors.  

Coordinative variability within a repetitive movement task may decrease the risk of an 

over-use injury. Previous research has found that increased coordinative variability is associated 

with a healthy state, whereas low coordinative variability is associated with an unhealthy state 

when looking at overuse injuries (Hamill et al., 2012). It is hypothesized that an increase in 

variability diffuses the strain on tissues, joints and bones during repetitive movements. Although, 

it is important to note that the decrease in variability cannot be assumed to be cause of the injury, 
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as it may be a result of the injury. There may be differences in movement variance during specific 

movement tasks between sports that require the movement in the sport compared to sports that do 

not require the movement. For example, basketball players may have greater variance during a 

drop jump compared to golfers, because basketball requires jumping whereas golf does not. 

Basketball players may adopt a more variable movement pattern compared to golfers in order to 

decrease the risk of over-use injuries.  

Expertise can also influence variability within a movement. Variability in human motion 

is due to the complex nature and large amount of redundancy within the neuro-musculo-skeletal 

system. Due to these redundancies, movement tasks can be completed in a multitude of different 

combinations. In sport, compensatory variability can be seen in elite athletes who are able to 

exploit the many degrees of freedom to their advantage (Davids et al., 2003). On the contrary, less 

skilled athletes tend to firmly fix the degrees of freedom and will show as much or more variability 

than the elites. The variability seen by less skilled athletes is not functional and is due to weak 

adaptations to task constraints (Davids et al., 2003). 

Exploring movement pattern variability can also discover unique, individualistic 

differences in movement technique. When looking at javelin throwers at the World Athletic 

Championships, it was seen that each finalist adopted a unique technique to throw the javelin 

(Morriss et al., 1997). It is thought that the differences in individualsô technique are due to 

individual-specific self-organization processes. Due the differences in technique, it is thought that 

individual training programs should be performed in a way that replicates the individualôs 

technique (Morriss et al., 1997).  

Using movement pattern recognition techniques, individual, customized training programs 

can be developed to build better training programs by replicating the individualôs technique. 
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Whole-body pattern recognition techniques could also help researchers to better understand the 

compensatory mechanisms used by athletes and to detect if there are differences in movement 

patterns between athletes of different skill levels and sports.  

2.2 Movement Screens 

Movement screens are used to assess athletesô movement patterns during specific tasks. 

They can be used to help determine deficiencies in stability, power, and flexibility. Three common 

movement screens are the functional movement screen, the vertical drop jump, and single-leg 

balance tasks. However, these three movement screens are subjective tests. Clinicians or raters 

give a quantitative score based on subjective grading criteria. There are no quantitative measures 

or cut offs used to assess the motion, raters follow subjective guidelines, but are free to perceive 

motions on their own. In addition, the differences in movement patterns need to be large enough 

to be detected by the human eye.  

2.2.1 Functional Movement Screen 

The functional movement screen (FMSÊ) (Functional Movement Systems, Chatham, VA, 

USA) is a subjective screening tool that is used to evaluate movement quality. The screen is 

comprised of seven tests that test both mobility and stability, with one of the tests being the bird-

dog test. The tests are designed to put the participant in extreme positions where, if present, 

weaknesses and imbalances can be detected. Each test is scored based by the rater on a four-point 

scale (0-3), providing a final score out of 21. Although the scoring system is based on subjective 

measures, previous research has found that there is high intra- and inter- repeatability amongst 

both novice and expert level raters (Minick et al., 2010; Teyhen et al., 2012).  

Within the literature, there are conflicting reports on the effectiveness of the FMSÊ to 

predict injury. Some researchers found that athletes and military cadets who receive  Ó14 are at a 
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significantly higher risk of injury than those who score >14 (Chorba et al., 2010; Kiesel et al., 

2007; Sorenson, 2009). However, other researchers have shown that there is no significant 

relationship between FMSÊ scores and risk of injury (McGill et al., 2012; Sorenson, 2009). One 

study found that if females scored Ò14 on the FMS, they were at a significantly increased risk of 

injury, but males who scored Ò14 were not (Knapik et al., 2015). 

One concerning factor, however, is that it was recently found that if the participants were 

made aware of the grading criteria, within minutes they were able to significantly improve their 

FMSÊ score (Frost et al., 2015). This leads to the question of how much the FMSÊ score is 

reflective of ñdysfunctionò and how much is reflective of external factors, such as grading criteria.  

2.2.2 Drop Jump Tests 

The drop jump test consists of an athlete jumping down from a box onto the floor and then 

immediately transitioning into a maximum vertical jump. At the first landing of the jump, the 

athlete has to absorb the impact of the drop in order to transition into the jump. The test is often 

used to identify deficiencies in knee stability. Clinicians and researchers focus on abduction and 

flexion of the knees, internal rotation and flexion of the hips and the kinetic motion patterns 

throughout the jump (Griffin, 2006; Hewett, 2005). Differences in kinetics during a vertical 

jumping task have also been examined between sports. Volleyball players had slower time profiles 

and lower jump heights compared to baseball players, where football and basketball player`s 

profiles and jump heights were in-between (Guillaume et al., 2014).  This is thought to be due to 

the nature of the sports. Although football and baseball do not require a lot of jumping during play, 

they require short, explosive muscular actions such as pitching, sprinting, or tackling. On the other 

hand, volleyball and basketball have to require more time optimization of their jumps during play 
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in order to be at the highest point to attack the ball (Guillaume et al., 2014). On this basis, the drop 

jump could be expected to reveal movement pattern differences on the basis of an athleteôs sport.  

2.2.3 Single-Leg Balance Tests 

Performance on single-leg balance tests, like the T-balance, may exploit experience related 

differences. A previous study looking at single-leg balance of national and regional level soccer 

players, found that the national level soccer players had a smaller centre of pressure surface area 

and centre of pressure velocity (increase postural control) compared to the regional players 

(Paillard et al., 2006). Similarly, elite golfers had superior balance with both eyes open and eyes 

closed compared to their less proficient counterparts (Sell et al., 2007). It is suggested that the 

superior postural control of elite athletes is due to repetitive training that influences motor 

responses and improves the athleteôs ability to attend to proprioceptive and visual cues, 

neuromuscular coordination, strength, and range of motion (Bressel et al., 2007; Glofcheskie, 

2015; Hrysomallis, 2010). 

Performance on single leg balance tasks may also exploit sport-related differences between 

athletes. When looking at balance between athletes who compete in different sports, previous 

research found that soccer players had superior postural control during single-leg dynamic balance 

tasks compared to basketball players (Bressel et al., 2007; Hrysomallis, 2010). This is thought to 

be due to the fact that soccer players often support their body mass on one foot while kicking the 

ball (Hrysomallis, 2010). The T-balance task may help demonstrate differences in whole-body 

motion variability between elite and recreational athletes, as well as difference between athletes 

competing in different sports.  
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2.3 Movement Pattern Recognition Techniques 

Quantitative methods may provide coaches and athletes with better ways to objectively 

characterize motion patterns. With advancement in motion capture technology, increased access 

to motion capture laboratories, and the reduction in costs of motion capture systems, motion 

capture has become a viable method to collect data. Motion capture systems are able to provide 

3D motion trajectories for the entire body, although, in order to capture the whole-body movement, 

outputs are generally quite large. Therefore, analytical techniques need to incorporate data 

reduction as part of the analysis. However, in order to get meaningful results, the data need to be 

able to be interpreted after they have been reduced. 

2.3.1 Principle Component Analysis (PCA) 

The use of PCA for motion analysis, enabling the extraction of fundamental patterns of 

coordination of complex movement, has dramatically increased. (Abdi and Williams, 2010). PCA 

is a multivariate statistical technique, which aims to reduce high-dimensional data sets. The goal 

of PCA is to provide an objective tool to identify and rank differences based on amount of variance 

explained within a data set, thus is able to reduce data. The PCA process identifies principal 

components, with the first component accounting for the largest possible variance and each 

following component descending in variance under the constraints of the preceding components 

(Abdi and Williams, 2010). If there are redundancies in the data, a subset of the data will explain 

the majority of the variance (Troje, 2002); for example, the first four principal components may 

account for 98% of the variance.   

Each principal component is also associated with a score; the score is a weighting factor 

for the principal component. The motion data can be modeled with fewer parameters based on the 

following equation:  
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ὖὸ ὴȟ  ὴȟὧȟ ὴȟὧȟ ȢȢȢὴȟὧȟ                                               (1) 

where Pj(t) is the modeled motion, pj,0 is the time-series mean posture, pj,n is the nth principal 

component, and cj,n is the score associated to the principal component (Troje, 2002). The higher 

the sum of the explained variance, the more accurate the replicated data will be.  

2.3.1.1 PCA-Based Movement Pattern Recognition Technique 

It is thought that complex movements can likely be characterized by a subset of pattern 

dynamics that emerge. Due to the complexity of sport movements, previous research has used PCA 

to identify movement features that contribute the greatest amount of variance to specific 

movements (Federolf et al., 2014; Troje, 2002; Young and Reinkensmeyer, 2014). A PCA-driven 

movement recognition technique has been used to recreate movement patterns during walking 

(Troje, 2002), diving (Young and Reinkensmeyer, 2014) and skiing (Federolf et al., 2014).  

The technique has been effectively used to detect and explain differences in gait patterns 

based on the participants age, sex, and feelings (happy/sad, nervous/relaxed) (Troje, 2002); to 

objectively analyze skiing technique (Federolf et al., 2014), and to develop an objective judging 

tool for competitive diving (Young and Reinkensmeyer, 2014). The PCA-based movement pattern 

recognition technique was the first data-driven method to decompose and analyze the complex, 

whole-body movement of a skier (Federolf et al., 2014). An obvious benefit of this technique, is 

its ability to provide objective biomechanical feedback to coaches and athletes to use when 

planning the training of athletes (Federolf et al., 2014). However, a less obvious, secondary benefit 

of the technique is that it can be used to support the development of instructorsô or coachesô skills 

to assess an athleteôs movements (Federolf et al., 2014). The PCA-based movement pattern 

recognition technique also allowed researchers to characterize movement features during diving, 

where dive scores could be calculated based on how a given feature pattern related to the mean 



13 

 

(Young and Reinkensmeyer, 2014). The technique has been able to provide researchers, coaches, 

and judges a method to objectively assess and score movement patterns of athletes performing 

different movement skills.  

The technique is able to detect objective differences in movement patterns, however, 

certain considerations need to be taken into account when using the technique. A possible concern 

outlined by Federolf et al. (2014) was possible differences in results when expressing data to 

different reference systems. Federolf et al. (2014) predicted that changing the reference system 

may result in changing what each PC represents. Therefore, which coordinate system the data 

should be referenced to needs to be further examined. In addition, PCA is able to detect differences 

based on how the athlete is positioned relative to the global space, which is not always beneficial 

information. Another prospective concern is whether or not the technique is able to distinguish 

differences in athletes in non-cyclical, constrained movements. For the purpose of this thesis, a 

constrained movement is defined as movement that has set beginning, middle and end tasks that 

need to be accomplished. 

2.5 Purpose 

Currently, movement screens are used as a method to detect aberrant movement patterns. 

A major limitation with the three aforementioned movement screens is that they are commonly 

evaluated subjectively, where the score is in the ñeye of the beholderò. Since there are no 

quantitative measures or cut offs used to assess the motion, raters follow subjective guidelines, but 

are free to perceive motions on their own. One way to objectively quantify movement is through 

the use of motion capture. Motion capture systems can record whole-body motion at a much finer 

level of detail and accuracy than done by a human observer (Federolf et al., 2014). However, the 

comprehensive motion data are usually quite large and difficult to interpret on their own. As such, 
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they may be reduced by characterizing the motions of specific joints of interest, or by applying 

other data reduction methods, such as PCA.   

PCA exists as a viable method that could permit more objective assessments for movement 

screens. However, based on noted challenges in previous research, adopting this methodology to 

movement screening requires exploration into certain methodological factors. In addition, 

consistent with dynamic systems theory, unique patterns of movement emerge due to sport, 

environment, and experience. However, to the best of the authorsô knowledge, there has been no 

previous research that examines objective differences in whole-body movement patterns during 

movement screens between athletes of different skill levels and sport. Therefore, this study will 

explore the feasibility of adopting this method to movement screening through a series of case 

studies.  

The purpose of case 1 is to assess the influence of a global versus local coordinate system 

on the interpretability of movement patterns characterized using PCA. As noted by Federolf et al. 

(2014), if an appropriate reference system is not chosen, then the principal components may be 

harder to analyze and interpret than principal components from a more appropriate reference 

frame. By exploring this effect, we will generate evidence to help determine which reference 

system is most appropriate for a given situation.  

The purpose of case 2 is to assess the influence of a moving versus a stationary local 

coordinate system. Global coordinate systems cannot always be used; therefore, this case will 

explore whether a moving or a stationary local reference system is more intuitively interpretable. 

By exploring this effect, we will generate evidence to help determine whether a moving or a 

stationary reference system is more appropriate for given situations.  
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The purpose of case 3 is to assess whether PCA can detect differences in movement 

patterns between athletes of varying skill level during non-cyclical, constrained tasks. It was 

hypothesized, based on previous research, that there would be differences in movement patterns 

between recreational and elite athletes (Glofcheskie, 2015; Hrysomallis, 2010; Paillard and Noé, 

2006).  

The purpose of case 4 is to assess whether PCA could detect differences in movement 

patterns between athletes competing in different sports during non-cyclical, constrained tasks. It 

was hypothesized that there would be differences between athletes of different sports. It was 

hypothesized that golfers would have superior postural control of the trunk during the bird-dog 

task (Glofcheskie, 2015) and soccer players would have superior postural control during the T-

balance (Bressel et al., 2007).  
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Chapter 3 

General Methodology 

This thesis, reporting on a secondary data analysis was made possible by Motus Global, 

LLC (Massapequa, NY, USA). Motus Global uses motion capture technology and analytical 

techniques to provide biomechanical-based feedback to athletes and coaches in order to guide 

improvements in performance and injury reduction. Motion capture data analyzed in this thesis 

were obtained by Motus Global as they conducted their proprietary screening process on 542 

athletes. Prior to obtaining these data, a non-disclosure agreement (Appendix A) was signed by all 

participating persons, ensuring that they do not disclose proprietary protocols, client information, 

or raw data from their athletes.  

3.1 Participants 

Motion capture data were obtained from 542 athletes (Table 1). This sample included 

athletes competing in baseball, basketball, soccer, golf, tennis, track and field, squash, cricket, 

lacrosse, football or volleyball. Prior to data collection, each participant read and signed an 

informed consent form (Appendix B) permitting Motus Global to use the data for future research. 

Table 1. Athletesô mean age, height, and weight. Standard deviations are in brackets.  

 

3.2 How the Data were Generated 

To provide context for how the motion capture data were collected, the following section 

summarizes the standard protocol implemented by Motus Global. Upon arrival at the Motus 

Sex n Age Height (cm) Weight (kg) 

Male 479 20.3 (4.50) 185.29 (19.39) 86.08 (22.25) 

Female 63 18.97 (5.68) 167.96 (8.86) 61.14 (13.30) 

Total 542 20.2 (4.67) 183.3 (19.28) 83.1 (22.85) 
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laboratory, participants read and signed the consent form. Once the consent form was signed, the 

participants had their height (with shoes on) and weight measured and then described all previous 

injuries that caused missed playing time (missed playing time considered as two or more missed 

training days) in the past 10 years (Appendix C). The collected information included: place of 

injury, diagnosis of injury, date of injury, surgical or non-surgical, and amount of time missed 

before returning to play. 

The participants were then outfitted with 45 passive, reflective markers (B&L Engineering, 

Santa Ana, CA, USA) to capture whole-body kinematic data. 37 markers were placed on 

anatomical landmarks to define the head, trunk, upper arms, forearms, pelvis, thighs, shanks and 

feet (Appendix D). Eight markers were used as tracking markers (one marker placed on each thigh, 

each forearm, each bicep, the right shank, and the right scapula) to assist with tracking the 

segments and also to identify the left limbs from the right. After the athlete was outfitted with all 

of the markers, (s)he performed a calibration trial (Figure 1) in order to zero movement to the 

standing position. During the calibration trial, the athlete stood with their feet shoulder width apart 

and toes pointing straight forward. The arms were abducted 90°, with a 90° bend in the elbow. The 

athlete then rotated his or her arms 90° both internally and externally. 

The athlete then completed a proprietary movement screening battery. The drop-jump, 

bird-dog and T-balance tests were included in that battery, where motion data from those three 

activities were analyzed in this thesis. The selected tests were chosen in order to maximize 

examination of motion and stability at the shoulder, spine, hip, knee, and ankle. Full-body motion 

data were captured using an 8-camera Raptor-E (Motion Analysis, Santa Rosa, CA, USA) motion 

capture system.  
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3.2.1 Bird-Dog Test  

The bird-dog test (also known as rotary stability) is a common spine stabilizing exercise 

used in yoga and rehabilitation therapy that emphasizes core strength, trunk stability and balance 

(McGill and Karpowicz, 2009). The athlete begins in a crawling position with one arm and the 

contralateral leg (e.g. left arm and right leg) extended until they are parallel with the floor at their 

trunk height (Figure 2A). The athlete then draws the elbow and knee of those respective limbs in 

towards the transverse midline so that they are touching (Figure 2B) and then returns back to the 

extended position (Figure 2C). The test is performed on both sides. 

 

Figure 1. Calibration trial. 

Figure 2. Bird-Dog Test. 

A B C 
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3.2.2 T-Balance Test 

The T-balance test challenges knee, hip, trunk stability, and postural control. Athleteôs 

begin by standing on one leg with the opposite hip and knee flexed to 90° and the hands in a prayer 

position at nipple line (Figure 3A). This position is held for three seconds. In one fluid motion, the 

athlete hinges at the hip, extending the hip and knee, bringing the trunk parallel to the floor, while 

extending both of arms out to 90° of abduction at the shoulder, creating a T-shape with the arms 

and the trunk. The athlete rotates forward as far as possible, while maintaining balance. Once 

reaching the T-position (Figure 3B), the athlete then returns to the starting position (Figure 3C). 

The test is performed on both the left and right foot.  

 

Figure 3. T-Balance Test. 

A B C 

Figure 4. Drop Jump Test 

A B C 
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3.2.3 Drop Jump 

The drop jump test is commonly used in research and clinical settings to detect deficiencies in 

knee stability (Hewett, 2005). The athlete begins by standing on a box 30 cm tall (Figure 4A). The 

participant then drops down off of the box onto the floor (Figure 4B) then immediately jumps 

upwards, aiming for maximum vertical height (Figure 4C).  

3.3 Data Analysis 

3.3.1 Pre-Processing 

Prior to implementing the PCA-based method, motion data were inspected, labeled, used 

to model joint centres, and clipped to respective trial start and end features. Motion capture data 

were collected and labelled using Cortex (Motion Analysis, Santa Rosa, CA, USA). Data from the 

anatomical landmarks and the tracking markers during the calibration trial were used to develop a 

3D, whole-body kinematic model in Visual3D (C-Motion, Inc., Germantown, MD, USA) (Figure 

5; Appendix E). The model was then applied to all motion trials outputting joint centre positional 

data bilaterally for the wrist, elbow, shoulder, foot, ankle, knee, and hip; in addition, centre of 

gravity positional data were outputted for the trunk, head, and pelvis. Lastly, marker positional 

raw data for the left and right heel, T2, T8, sternum, and the back, front and sides of the head were 

extracted to model the feet, trunk and head more robustly (Figure 5). Data were then exported to 

Matlab (The MathWorks, Natick, MA, USA). All trials were clipped to specific start and end-point 

criteria (Appendix F) and time normalized to 100 frames to control for differences in the absolute 

time taken to complete each movement.   
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3.3.2 Application of PCA as a Movement Pattern Recognition Technique 

A principal component analysis (PCA)-based movement pattern recognition technique, as 

done by Troje (2002) was used to analyze the data. The technique consisted of running two PCAs. 

The first PCA was within the subject and outputted the principal components and corresponding 

scores for the variability within the movement. The second PCA compared variability across 

subjects. 

 

 

Figure 5. A) Visual3D model with all anatomical landmark markers. B) Matlab model made by 

calculating: joint centers of the feet, ankle, knee, hip, shoulder, elbow, and wrist; center of gravity 

position for the trunk, pelvis, and head; and, marker positional data of the right and left heel, T2, 

T8, sternum, and the back, front, and sides of the head.  

A) B) 
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3.3.2.1 First Principal Component Analysis 

A 78 x 101 matrix was created for each athlete for each task.  The x,y and z positions for 

each calculated joint centre, centre of gravity, and marker position data (26 location x 3 axes) 

comprised the 78 variables. Each variable was time-normalized to 100, resulting in 101 points.  

A principal component analysis was applied to the movement data corresponding to each 

individual movement performance and a trace criterion of 90% was applied (i.e. the sum of the 

explained variance of the retained eigenpostures had to be greater than 90%). As a result, the PCA 

generated four eigenvectors, herein referred to as eigenpostures (Figure 6) (matrix was a [4 x 78]), 

the reference posture (the average posture throughout the movement) (matrix was a [1 x 78]) and 

the scores (one for each time point) associated with each eigenposture (matrix was a [4 x 101]) 

(Figure 7) were extracted for each athlete. The eigenpostures are the principal component postures 

(eigenvectors), which are arranged in their order of explained variance (eigenvalues). The principal 

component scores (PC scores), explain how each eigenposture varies over the course of the 

movement. The movement was then able to be recreated using: 

ὓ Вὖ  ὖὛ ὖὛ ὖὛ ὖὛ  ,   (1) 

where Mrecreated is the recreated movement, Preference is the reference posture, P1-4 are the four 

eigenpostures and S1-4 are the scores that are associated with the eigenpostures (Figure 8). 



23 

 

 

  

Figure 7. Four representative scores associated with the drop jump test eigenpostures across time. 

Eigenposturen*scoren + reference posture at n gives you the recreated motion at framen 

 

Figure 6. Four representative eigenpostures for one subject during the drop jump test.  
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3.3.2.2 Second Principle Component Analysis 

In order to perform the second principal component a second matrix was created for each 

individual movement using each participantôs reference posture, eigenpostures and scores across 

the columns, where each row described the PCA data for each participant. Therefore, the matrix 

that was used for the second PCA was [n x 794], where n was the number of athletes completing 

that motion and included in the analysis. In some instances, certain athletes did not perform every 

task and in some cases marker occlusion and other data collection errors required that some trials 

be removed. Therefore, each task had a unique number of athletes and therefore matrices sizes.  A 

second PCA was applied to the principal components and scores. Each participant has an 

individual score corresponding with each principal component. The scores describe the amount 

each participantôs whole-body movement deviates from the mean. Due to the size of the dataset 

and in order to robustly investigate the PCA-driven pattern recognition technique as a proof of 

principle, a case-study approach was used for the thesis. Four cases were created, with the first 

Figure 8. A) The original positional data for the drop jump test for one subject B) The reconstructed 

motion data for the drop jump test for one subject using the equation: reference position + 

eigenposture 1*score 1 + eigenposture 2*score 2 + eigenposture 3*score 3 + eigenposture 4*score 

4.  

A B 
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two cases geared towards methodological concerns and the last two cases looking at 

implementation of the PCA-driven pattern recognition technique. Chapters 4-7 will go through the 

specific methods, results and discussion pertaining to each case.  

3.3.2.3 Interpretation 

For a traditional PCA, loading vectors can be used to interpret results. However, for the 

PCA technique used in the current thesis, since the second PCA is being applied on a reference 

posture, four principal components, and the scores associated with each of the four principal 

components, interpreting what each PC represents from the loading curve is not intuitive or easily 

identifiable. Therefore, single component reconstruction (SCR) (Brandon et al., 2013) was used to 

confirm which aspect of the movement each principal component represents.  

For each principal component, a mean movement, a low-scoring movement and a high-

scoring movement was recreated. The mean movement calculated by averaging the data across all 

of the athletes. The 5th percentile movement (low-scoring) was recreated by: 5th Percentile 

Movement = Mean movement + (PCn * 5
th percentile scoren). And, the 95th percentile movement 

(high-scoring) was recreated by: 95th Percentile Movement = Mean Movement + (PCn * 95th 

percentile scoren). Videos and figures were made with the mean, low, and high-scoring movements 

overlaid in order to see side by side comparisons. In the videos and figures provided in chapters 

4-7, the blue avatar is the motion reconstructed from the mean score. The red avatar represents the 

motion of an athlete that had a score in the 95th percentile (high-scoring) and the black avatar is 

the reconstructed motion of an athlete that had a score in the 5th percentile (low-scoring). 
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Chapter 4 

Case 1: Local vs. Global Reference System 

4.1 Introduction  

The purpose of case 1 is to assess the influence of a global versus local coordinate system 

on the interpretability of movement patterns characterized using PCA. As noted by Federolf et al. 

(2014), if an appropriate reference system is not chosen, then the principal components may be 

harder to analyze and interpret than principal components from a more appropriate reference 

system. By exploring this effect, we will generate evidence to help determine which reference 

system is most appropriate for a given situation.  

4.2 Case-Specific Methods 

The number of participants as well as the average age, height and weight for both the bird-

dog right and drop jump tasks can be found in Table 2. Three reference systems were examined, 

two local (pelvis and right shank) and the global reference system. Visual3D was used to calculate 

data relative to the centre of mass of the right shank, the centre of mass of the pelvis and the global 

reference system and then all data were exported to MatLab for further analyses. The pelvis was 

chosen as it is the segment that is closest to the midpoint of the body. The shank was chosen since 

it has easily identifiable anatomical bony landmarks, and thus is less likely to have researcher error 

due to misplacement of markers. Qualitative comparisons were made between the three conditions 

(global reference system, pelvis reference system, and shank reference system) using visual 

inspection. In order to look at a task with and without displacement, the bird-dog right (no 

displacement) and the drop jump (displacement) task were examined. The bird-dog right task 

refers to the bird-dog task in which the right arm and left leg are extended. Only the first 7 PCs 
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were examined for this case. The percentage of explained variance for each task and each reference 

system used can be found in Table 3.  

 

4.3 Results 

Manipulating the frame of reference between a global (lab) reference system, the local right 

shank coordinate system, or a local pelvis coordinate system, affects the interpretation of the 

principal components.  

4.3.1 Bird-Dog Right 

Analysis of the bird-dog task allowed exploration into how alternate frames of reference 

can influence the interpretation of resulting principal components during a whole-body movement 

task. During the bird-dog right, although the right arm and left leg are moving, the right knee and 

left hand are firmly planted on the ground throughout the task. When comparing the bird-dog right 

  n Age Height (cm) Weight (kg) 

Bird -Dog Right 388 20.5 (4.3) 183.9 (21.0) 83.7 (23.4) 

Drop Jump  280 20.5 (4.5) 183.4 (17.0) 85.2 (24.3) 

Task Ref. Sys. PC 1 PC 2 PC 3 PC 4 PC 5 PC 6  PC 7 Total 

Bird-Dog Right 

Pelvis 86.71 3.89 1.78 0.96 0.83 0.67 0.54 95.38 

Shank 26.78 17.51 10.36 5.11 4.28 4.01 2.56 70.61 

Global 79.25 4.85 2.92 2.17 1.5 1.11 0.89 92.69 

Drop-Jump 

Pelvis 61.31 34.53 0.92 0.83 0.63 0.32 0.27 98.81 

Shank 96.3 1.46 0.56 0.32 0.25 0.15 0.14 99.18 

Global 39.13 32.65 11.88 7.31 1.96 1.23 1.1 95.26 

Table 2. The mean and standard deviations of age, height and weight by sport for the bird-dog 

and T-balance tasks 

Table 3. The percent of variance explained by each principal component for data relative to the 

pelvis, shank, and global reference systems for bird-dog right and drop jump tasks. Total is the 

sum of the first 7 PCs.  
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task for PC 1 between the global, pelvis, and shank coordinate systems (Videos 1- 3; Figure 9-11, 

respectively), few differences can be seen regarding the movement of the task. From all three 

videos, PC 1 can be interpreted as the range of motion the elbow and knee move through during 

the task. As can be seen in the videos and figures (Video 1-3; Figure 9-11), notice that the black 

avatar (low score) achieves more extension of the arm and leg at the beginning and end of the task 

and more flexion towards the midline during the middle of the task compared to the red avatar 

(high score). Therefore, PC 1 was interpreted as the amount of extension and flexion achieved 

throughout the task. However, with the global coordinate system, the avatars are not all facing the 

same direction (Video 1; Figure 9). The mean (blue) and the high-scoring (red) avatars are parallel 

with each other, while the low-scoring (black) is perpendicular to the other two avatars. These 

results demonstrate that consistent alignment of athletes within the lab space is important when 

expressing data relative to the global coordinate system. Expressing data relative to a local, 

stationary coordinate system may overcome limitations due to positional misalignment with 

respect to the global lab space.  

Figure 9. Single component reconstruction of the 95th (red), 50th (blue) and 5th (black) percentile 

score for PC 1 for the bird-dog right movement where data were expressed relative to the global 

coordinate system. Left: 0% of movement (start), middle: 50% of movement, right: 100% of 

movement (end).   
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For PC 2, when motions were expressed relative to the global and pelvis coordinate 

systems, the movements, as seen in the video, were not as intuitive to interpret as the reconstructed 

motions did not seem to resemble features of the bird-dog movement (Video 4-5; Figure 12-13, 

respectively). As can be seen in the videos and figures (Video 4-5; Figure 12-13), the avatars start 

to move the elbow towards the knee, however the movement is minimal and the elbow and knee 

are not close to touching in the centre. Because there is minimal movement, it is difficult to 

interpret what the principal component refers to. For the global coordinate system, comparable to 

PC 1, not all the avatars are facing the same direction, again suggesting that not all athletes 

performed the task in the same position relative to the global coordinate system. When the 

coordinate system is referenced around the shank for PC 2, in the starting position, the leg and arm 

are fully extended, the right elbow and left knee are then brought together at the midline and then 

are fully extended again. (Video 6; Figure 14). The full range of motion expected to be seen 

Figure 10. Single component reconstruction of the 95th (red), 50th (blue) and 5th (black) 

percentile score for PC 1 for the bird-dog right movement where data were expressed relative 

to the local coordinate system of the pelvis. Left: 0% of movement (start), middle: 50% of 

movement, right: 100% of movement (end).  

Figure 11. Single component reconstruction of the 95th (red), 50th (blue) and 5th (black) 

percentile score for PC 1 for the bird-dog right movement with the data in expressed relative to 

the local coordinate system of the shank. Left: 0% of movement (start), middle: 50% of 

movement, right: 100% of movement (end). 
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throughout the task is being exhibited. Therefore, using motion data expressed relative to the right   

shank coordinate system, PC 2 was interpreted as a relative speed of movement feature.   

4.3.2 Drop Jump 

Analysis of the drop jump task allowed exploration into how alternate frames of reference 

can influence the interpretation of resulting principal components during a whole-body movement 

task. When motion was expressed relative to the global reference system, data reconstructed using 

PC 1 (Video 7; Figure 15) was interpreted as vertical motion or jump height. Jump height is an 

Figure 12. Single component reconstruction of the 95th (red), 50th (blue) and 5th (black) 

percentile score for PC 2 for the bird-dog right movement where data were expressed relative 

to the global coordinate system. Left: 0% of movement (start), middle: 50% of movement, right: 

100% of movement (end). 

Figure 13. Single component reconstruction of the 95th (red), 50th (blue) and 5th (black) 

percentile score for PC 2 for the bird-dog right movement where data were expressed relative 

to the local coordinate system of the pelvis. Left: 0% of movement (start), middle: 50% of 

movement, right: 100% of movement (end). 

Figure 14. Single component reconstruction of the 95th (red), 50th (blue) and 5th (black) 

percentile score for PC 2 for the bird-dog right movement where data were expressed relative 

to the local coordinate system of the shank. Left: 0% of movement (start), middle-left: 25% of 

movement, middle: 50% of the movement, middle-right: 75% of the movement, right: 100% of 

movement (end). 
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outcome often only made when data are in reference to the global system. However, when motion 

was expressed relative to the right shank or pelvis local coordinate systems, PCs become more 

challenging to interpret. Video 8-9 and Figure 16-17 show the drop jump motion reconstructed 

from PC 1 considering motion data expressed relative to the pelvis and right shank, respectively. 

This is likely a result of the underlying motion of the selected reference frames. In this case, the 

use of local (internal) reference systems challenged the ability to interpret PCs that explained the 

greatest amount of variability in the data. However, similar to results found with the bird-dog task, 

when the motion was expressed relative to the global coordinate system, later PCs (Video 10; 

Figure 18, data reconstructed from PC 7) highlight differences in the athletesô orientation within 

the global system during data collection. This can be seen by the horizontal offset of the avatars in 

the initial pose.   

Figure 16. Single component reconstruction of the 95th (red), 50th (blue) and 5th (black) 

percentile score for PC 1 for the drop-jump movement with the data expressed relative to the 

local coordinate system of the pelvis. Left: 0% of movement (start), middle: 50% of movement, 

right: 100% of movement (end).  

Figure 15. Single component reconstruction of the 95th (red), 50th (blue) and 5th (black) 

percentile score for PC 1 for the drop-jump movement with the data expressed relative to the 

global coordinate system.  Left: 0% of movement (start), middle: 50% of movement, right: 

100% of movement (end). 
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4.4 Discussion 

The purpose of case 1 was to examine the differences between using a local (pelvis or right 

shank) versus a global reference system. Changing the reference system from a local to a global 

coordinate system affected the ability to interpret PCs. In order to get interpretable results, the 

motion data reconstructed from each PC should be somewhat intuitive to permit interpretation 

using single component reconstruction. The global reference system is the ideal reference system 

to use because it provides information regarding how athletes are moving relative to a fixed frame 

of reference. As can be seen in PC 1 of the drop jump, this is important for tasks where the 

overarching movement objective is expressed relative to the global coordinate system, such as 

Figure 18. Single component reconstruction of the 95th (red), 50th (blue) and 5th (black) 

percentile score for PC 7 for the drop-jump movement with the data expressed relative to the 

global coordinate system. Left: 0% of movement (start), middle: 50% of movement, right: 

100% of movement (end).   

Figure 17. Single component reconstruction of the 95th (red), 50th (blue) and 5th (black) 

percentile score for PC 1 for the drop-jump movement with the data expressed relative to the 

local coordinate system of the shank.  Left: 0% of movement (start), middle: 50% of movement, 

right: 100% of movement (end). 



33 

 

maximizing the vertical or horizontal distance during jumping. However, when using the global 

reference system, the analysis is sensitive to how subjects are positioned relative to the origin. This 

can be seen in PC 1 and 2 of the bird dog and PC 7 of the drop jump, where those PCs likely 

explain positional differences of the athletes rather than movement variance. Therefore, when 

expressing motion data relative to a global coordinate system is imperative that participants be 

oriented consistently relative to the origin of the global space. Although this may be feasible in a 

laboratory setting, it may become increasingly more difficult when testing subjects in the field or 

a mobile laboratory. If the same relative position cannot be achieved for each athlete, either a 

virtual coordinate system can be made using external landmarks (Federolf et al., 2014), such as 

the box being used for the drop jump, or a stationary local coordinate system can be used, such as 

the right shank.  
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Chapter 5 

Case 2: Moving vs. Stationary Local Reference System 

5.1 Introduction  

The purpose of case 2 is to assess the influence of a moving versus a stationary local 

reference system. As discussed in the previous chapter, there are instances when a global reference 

system cannot always be used, such as, when participants do not perform the task in the same 

position relative to the global reference system. Therefore, this case will explore whether a moving 

or a stationary local reference system is more appropriate for given situations in order to be able 

to provide evidence-based recommendations for choosing local reference systems.   

5.2 Case-Specific Methodology 

The number of participants and the mean age, height, and weight for each task can be found 

in Table 4. For this case study, the right shank was used as the reference system. Visual3D was 

used to calculate the data relative to the centre of mass of the right shank and then all data were 

exported to MatLab for further analysis. The bird-dog and T-balance tasks were performed on both 

the left and the right side. A qualitative comparison was made between the left and right bird-dog 

trial and a second comparison was made between the left and right T-balance trial in regards to the 

right shank using visual inspection. During the right bird-dog and right T-balance trials, the right 

shank is stationary, whereas during the left bird-dog and left T-balance trial, the right shank is 

moving. Only the first 7 PCs were examined for this case. The percentage of explained variance 

for each task and each reference system used can be found in Table 5.  
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5.3 Results 

5.3.1 Bird-Dog 

As mentioned in Chapter 4, PC 1 for the right-bird dog was interpreted as a range of motion 

feature pertaining to the left knee and right elbow (Video 3; Figure 11) and PC 2 was interpreted 

as a relative speed of movement feature (Video 6; Figure 14). The avatarôs movements appear to 

be reflective of the bird-dog motion profile.  

When examining the bird-dog left, PC 1 can be interpreted as a range of motion feature, 

similarly to PC1 of the bird-dog right (Video 11; Figure 19). Higher scores were observed in those 

using less range of motion throughout the task. Since the reference system is expressed relative to 

the right shank, when reconstructed, by default the right shank appears to not move (even though 

it is moving during the task). Although aspects of the task can be detected in the video, such as the 

elbow and the knee touching and then extending back outwards again, the avatar does not visually 

mimic what the athletes looked like during the test, making this PC less intuitive to interpret. For 

  n Age Height (cm) Weight (kg) 

Bird -Dog Right 388 20.5 (4.3) 183.9 (21.0) 83.7 (23.4) 

Bird -Dog Left 384 20.5 (4.4) 183.8 (21.3) 84.0 (24.0) 

T-Balance Right 395 20.4 (4.3) 183.7 (21.1) 84.1 (24.0) 

T-Balance Left 395 20.4 (4.3) 183.4 (20.3) 84.1 (23.8) 

   PC 1 PC 2 PC 3 PC 4 PC 5 PC 6  PC 7 Total 

Bird-Dog Right 26.78 17.51 10.36 5.11 4.28 4.01 2.56 70.61 

Bird-Dog Left 81.79 5.51 2.53 2.05 1.32 0.96 0.74 94.9 

T-Balance Right 31.98 20.52 6.88 5.9 5.37 3.25 2.57 76.47 

T-Balance Left 26.07 17.21 10.15 7.2 6.28 4.07 3.22 74.2  

Table 4. The mean and standard deviations of age, height and weight by sport for the bird-dog 

and T-balance tasks 

Table 5. The percent of variance explained by each principal component for the bird-dog and 

T-balance tasks. Total is the sum of the first 7 PCs.  
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PC 2, it becomes difficult to interpret what the differences are between the three avatars in terms 

of the bird-dog movement (Video 12, Figure 20). One can see that the black avatar has the greater 

vertical displacement compared to the red and blue avatars, however, it is difficult to interpret what 

that means with respect to their overarching movement performance.  

 

5.3.2 T-Balance 

For the T-balance right, PC 1 was interpreted as a hip forward rotation feature (Video 13; 

Figure 21). Lower scores performed the motion with greater forward rotation, whereas higher 

scores performed the motion with less forward rotation. This can be seen as the black (low score) 

Figure 19. Single component reconstruction of the 95th (red), 50th (blue) and 5th (black) 

percentile score for PC 1 for the bird-dog left movement with the data in reference to the local 

coordinate system of the shank.  Left: 0% of movement (start), middle: 50% of movement, 

right: 100% of movement (end). 

Figure 20. Single component reconstruction of the 95th (red), 50th (blue) and 5th (black) 

percentile score for PC 2 for the bird-dog left movement with the data in reference to the local 

coordinate system of the shank.  Left: 0% of movement (start), middle: 50% of movement, 

right: 100% of movement (end). 
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avatarôs trunk and left leg are more parallel to the ground during the óT-positionô compared to the 

other red (high score) and blue (average score) avatar. PC 2 refers to the amount of flexion and 

extension of the knee, hip, shoulder, and elbow performed though out the task (Video 14; Figure 

22). The lower the score, the more range of motion through flexion and extension of the knee, hip, 

shoulder, and elbow occurs. In the beginning frames, the black avatar can be seen to have its thigh 

segment above the other two avatarôs thigh segments (greater hip flexion) and greater knee flexion. 

The black avatarôs hands are also closer to the trunk and above the other two avatarôs hands, 

suggesting greater elbow and shoulder flexion. Later in the movement, during the óT-positionô, it 

can be seen that the black avatarôs leg is higher and straighter than the other two avatarôs leg and 

its arms are more perpendicular to the trunk. This suggests greater extension at the hip, knee, and 

shoulder joints. Similar to the bird-dog right, the movements performed by the avatar mimics the 

movement performed by the athletes during the test, making interpretation more intuitive. 

For the T-balance left, similar to the T-balance right, PC 1 was interpreted as the amount 

of forward rotation about the hip (Video 15; Figure 23). In the video, the black avatar can be seen 

to have its trunk and right leg more parallel to the ground compared to the red and blue avatar. For 

PC 2, the avatars appear to have similar postures during the starting and ending position and when 

laid out in the óT-positionô (Video 16; Figure 24). However, the black avatar reaches each position 

first, suggesting that PC 2 refers to the speed of the movement. Comparable to what was seen with 

the bird-dog left, the T-balance left does not imitate the movement that was performed by the 

athletes during the test. Although components of the task, such as the starting position, the óT-

positionô, and the final position can be seen in PC 1 and PC 2, the movement is relative to a relative 

reference system instead of a fixed reference system.  
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Figure 21. Single component reconstruction of the 95th (red), 50th (blue) and 5th (black) 

percentile score for PC 1 for the T-balance right movement with the data expressed relative to 

the local coordinate system of the shank.  Left: 0% of movement (start), middle: 50% of 

movement, right: 100% of movement (end). 

Figure 22. Single component reconstruction of the 95th (red), 50th (blue) and 5th (black) 

percentile score for PC 2 for the T-balance right movement with the data expressed relative to 

the local coordinate system of the shank.  Left: 0% of movement (start), middle: 50% of 

movement, right: 100% of movement (end). 

Figure 23. Single component reconstruction of the 95th (red), 50th (blue) and 5th (black) 

percentile score for PC 1 for the T-balance left movement with the data in expressed relative to 

the local coordinate system of the shank.  Left: 0% of movement (start), middle: 50% of 

movement, right: 100% of movement (end). 
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5.4 Discussion 

The purpose of case 2 was to explore the differences in results between using the local 

reference system of a stationary versus a moving segment. When the right shank was stationary 

throughout the task, PCs could be intuitively interpreted for both the bird-dog and the T-balance 

task. However, similar to case 1, when the reference coordinate system was moving throughout 

the task, the PCs were less intuitive to interpret. This is due to the right shank being the origin. 

Since the right shank is stationary during the bird-dog right task, the reconstructed data appear to 

be that of absolute motion. Whereas, during the bird-dog left task, the shank is moving and 

therefore, the reconstructed motion appears to be that of relative motion.  If using a local coordinate 

system, a stationary segment with easily identifiable bony landmarks should be used in order to be 

able to accurately interpret the PCs. If all segments are moving throughout the task, a virtual, local 

coordinate system can be used. In a study that examined downhill racing skiing technique, a local 

coordinate system was constructed at the midpoint between the two skis (Federolf et al., 2014). 

This allowed for the coordinate system to move along with the skier downhill, but also remain 

relatively stationary in respect to the skier. 

Figure 24. Single component reconstruction of the 95th (red), 50th (blue) and 5th (black) 

percentile score for PC 2 for the T-balance left movement with the data in reference to the local 

coordinate system of the shank.  Left: 0% of movement (start), middle-left: 25% of movement, 

middle: 50% of the movement, middle-right: 75% of the movement, right: 100% of movement 

(end). 


