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Abstract

Quantitative methods can help us understand how underlying attributes contribute to
movement patterns. Applying prineéibcomponents analysis (PCA) to whaledy motion data
may provide an objective datwiven method to identify unique and statistically important
movement patterns. Therefore, the primary pur

movement patteshan be differentiated based skill level or sport played using PCA.

Motion capture data from 542 athletes performing three a@éning movements (i.e.
bird-dog drop jump, Fbalance) were analyzed. A P&Xasedpattern recognition technique was
usedto analyze the data. Prior to analyzing the effects of skill level or sport on movement patterns,
methodological considerations related to motion analysis reference coordinate system were

assessed. All analyses were addressed asstafies.

For the firs case stugl referencing motion data togéobal (lab-based) coordinate system
compared to éocal (segmenbased) coordinate system affected the ability to interpret important
movement features. Furthermore, for the second case study, where the afigitgret PCs was
assessed when data were referenced to a stationary versus a moving-bagetigbordinate
system, PCs were more interpretable when data were referenced to a stationary coordinate system

for both the birddog and Thalance task.

As aresult of the findings from case study 1 and 2, only stationary segrasetl
coordinate systems were used in cases 3 and 4. Obenggirddog task, elite athletes had
significantly lower scores compared to recreational athfergsrincipal componentRC) 1. For
the T-balance movement, elite athletes had significantly lower scores compawxtdational

athletes for PC 2. In both analyses the lower scores in elite athletes represented a greater range of



motion. Finally, case study 4 reported differer& i n at hl et esd® movement

in different spois, and significant differences in technique were detected during thdduyrthsk.

Through these case studies, this thesis highlights the feasibility of applying PCA as a
movement pattern cegnition technique in athletes. Future research can build on thisqdfroof
principle work to develop robust quantitative methods to help us better understand how underlying

attributes (e.g. height, sex, ability, injury history, training type) contritugetformance.
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Chapter 1

Introduction

Movement screens are often used to idertifgrraninovement patterns that are believed
to increase risk of injuryand/or impede performance. This is accomplished by examining
individual s6 kinetics and kinematics data to
movement(Dona et al., 2009)However, movement screening remains primarily qualitative,
meaning they arbased on theisual appraisal of movement. Quantitative methcals help us
understand how underlying attributes contribute to movement quality and patterns. Quantitative
methods could enhance movement screenig,ncreasing objectivity, while creatinthe
potential to detect new and important movement featuresrtagtnot be easily visible to the
human eye. This work explores the viability gbrancipal component analysisased movement
pattern recognition techniqu® permit an objective charadtaation of movementwithin a

movement screening paradigm.

Movementscreens are growing in popularity amongst coaches and athletes to exploit
aberrantnovementsA commonly usedjuantitative movement screen is the functional movement
screen (FMSE) (Functional Mo v e nletnet FSWSE eims , &
guantitative subjective movement screen, meaning that athletes receive a numerical score,
however that score is based on subjective observalitiesscreen is comprised of mobility and
stability tasks that are designed put the participant in extreme positions wheif present,
weaknesses and imbalances can be deteetath €st is given a score by a raterho rates each
task based on certain grading criteria that can be seen by the humidowgeer it was recently
found that if the participants were made eavaf the grading criteria, within minutes they were

able to significant |(rosietah, 2@ 5)his leadseto the qiesihbf s c o r



how much the FMSE scor e i sowmeachils eefettivewofeextarfal i dy s
factors, such aknowledge ofgrading crieria. Anoher limitation of currently ugskquantitative
subjectivemovement screens thatdifferences between scores neéede large enough for the

human eye to detect. Motiarapture systems are able to detect differences in movements much
smaller tharcanbe seen and processed by a huwiaserver and give measures that can provide

athletes and coaches wihantitative objectve feedback.

Quantifying movement patterns regesrmotion capture data. Motion capture systems are
able to track the 3D motions of reflective markers carefully placed on the body to comprehensively
describe the human motion. However, the comprehensive motion data are difficult to interpret on
their own.As such, they may be reduced by characterizing the motions of specific joints of interest,
or by applying other datreduction methods, such as principal component analysis (PIC®)
use of PCA for motion analysis, enabling the extraction of fundameati#rns of coordination

of complex movements, has dramatically increased.

PCA is a multivariate statistical technique, which aims to reducediigbnsional data
sets. The PCArocessdentifies principal components (PCs), with the first component aticau
for the largest possible variance and each following component descending in variance under the
constraints of the preceding compongtbdi and Williams, 2010)If there are redundancies in
the data, a subset of the data will explain the majority of the var{@nage, 2002) for example,
the first four principal components may account for 98% of the variance. BEAgo examine
the entiremovement (i.e. all marker trajectoriesgn help accurately identify embedded patterns

of complex movements.



PCA-based movement pattern ogmition technique used in this themsan extension of
traditional PCA. For the technique used in this theSI€A is applied twice to subject data to
reduce the dimensionality ahotion An initial PCA is performed to find redundant features of
motionin order to reduce the number of parameters to be analyzed. The second PCA is performed
to allow for comparisons to be made between athletes. The second PCA outputs principal
components, scores, and a mean movement, in order to allow for the data tonsgueted to
identify the differences in movement patterfise techniquéas previously been effectively used
to detect and explaidifferencesin gait patterns based on the participants age, sex, and feelings
(happy/sad, nevous/relaxgdyoje, 2002) to objectively analyze skiing technig(feederolf et al.,

2014) and to develop an objective judging tool for competitive divifpung and
Reinkensmeyer, 2014Yhe PCAbased movement pattern recognition technique tadirst
datadriven methodo decompose and analyze the complex, wholdy movement of a skier
(Federolf et al., 2014)An obvious benefit of this technique, isistable to provide objective
biomechanical feedback to coaches and athletes to use when planning the training of athletes
(Federolf et al., 2014However, a less obvious, secondary beréfthe technique is that it can

be wused to support the devel opment of i nstru
movementgFederolf et al., 2014)The PCAbased movement pattern recognition technique also
allowed researchers to characterize movement features during diving, dWwescores could be
calculated based on how a given feature pattern related to the(vioeang and Reinkensmeyer,

2014) Thetechnigue has been able to provide researchers, coaches, and judges a method to

objectively assess and score movement patterns of athletes performing different movement skills.

The technique is able tobjectively detectdifferences in movement patterns, however,

certain considerations need to be taken into account when using the technique. A possible concern



outlined by Federolf et al. (2014) wagssible differences in results when relating data to different
coordinatesystemsFederolf et al. (2014) predicted that changing the reference system may result
in changing what each PC represents. In addiR@#A is able to detect differences based on how
the athlete is positioned relative to the global space, which iswayslbeneficial information.
Therefore, which coordinate system the data should be referenced to needs to be éxitived.
prospective concern is whether or not the technique is able to distinguish differences in athletes in
noncyclical, constrained ovementsFor the purpose of this thesis, @nstrainednovement is
defined asnmovement that haset beginning, middle arehdtasksthat need to be accomplished.
Thereforethe purposg of the current study werg) toaddress methodological considerasidoy
determiningdifferences in results when data are referenced to diffeeégtencesystems when
using PCA, and 2) touse what was learned in purpose lassess the application of pattern
recognition for differentiating wholeody movement patterns athletes of different skill level

and sport during nenyclical, constrained movements usipGA.



Chapter 2

Overview of Literature

The principal component analy§RBCA)-based movement pattern recognition technique
used in this thesis ap@ohes movemenariability from the perspective dhe wholebody. The
technique allows for movement variance to be examined as a whole system, rather than as

individual parts.

2.1Variability in Motion

Human movement variability is the normal variation thetuss in motor performance
between individuals (intendividual variability) or across multiple repetitions within an
individual (intraindividual variability). Traditional perspectives believe that mt@ividual
variability can be attributed to ranghoerror or noise. However, more recent perspectives believe
that movement variability is not random, but in fact is functional and the study of the variability
can provide meaningful insight regarding human movement. Variability in movement is thought
to be functional in three different ways by affecting: 1) compensatory movements, 2) ability to
adjust to the environmerand3) risk of injury during repetitive movemer(Bartlett et al., 2007)
Moreover, variability can also be influenced by experience, and can reflect personal differences in
technique.

Studies targeting sporting movements provide evidermecthmpensatory patterns may
emerge between athletés.a study looking at movement variability in female basketball players
varying in skill level from national team players to players with very little experience, skilled
players had less variability @ihe elbow and wrist joints. However, there were no significant
differences in the amount of variability in the elbow trajectory between the two diBufien et
al., 2003) It is believed that the variability in the elbow trajectory is a compensatory technique to

5



reduce the wvariability of the |loundbyteseardhersaj ect c
looking at taget throwing of balls and dartssksthatrequire accuracyKudo et al., 2000; Muller

and Loosch, 1999When studyingvariability as acontribubr to compensatory techniqueshas

beenfound that variability in the shoulder, elboandwrist joints did not affect the height, angle

or speed of release of the ball. This suggests that compensatory mechanisms were occurring at the
shoulder, elbow and wrist in order to minimize variability of the release parameters (height, angle

or speed ofelease)Davids and Glazier, 2010)

Compensatory patterns may wheh mmovingennddéregte wi t |
performance environmentlesearchern®oking at treadmill running versus ovground running
have found that runners have greater amounts of variability duringgomend running compared
to treadmill runnig (Wheat et al., 2005 urther research investigateshning on a selpropelled
treadmill (the treadmill changes speed asrtierchanges speedfgain, the runners during
overground running had greater variability than when running on thepsgdélled treadmill.

This suggests that runners haveeager variability while runningoverground to adjust to
environmental factors such as uneven ground, wind and obstBal¢kett et al., 2007; Wheat et
al., 2005) Therefore, it is thought that variability contributes to the functiopalitoeing able to
react and adjust to environmental factors.

Coordinative variability within a repetitive movement task may decrease the risk of an
overuse injury.Previous research has found that increased coordinative variability is associated
with a healthy state, whereas low coordinative variability is associated with an unhealthy state
when looking at overuse injurigélamill et al., 2012) It is hypothesized that an increase in
variability diffuses the strainntissues, joints and bones during repetitivevements. Although,

it is important to note that the decrease in variability cannot be assumed to be cause of the injury,



as it may be a result of the injuiihhere may be differences in movement variance during specific
movement tasks between sportd tieguire the movement in the sport compared to sports that do
not require the movement. For example, basketball players may have greater varianca during
drop jump compared to golfers, because basketball requires jumping whereas golf does not.
Basketballplayers may adom more variable movement patteompared to golfers order to
decrease the risk of ovese injuries.

Expertise can also influence variability within a movem#fairiability in human motion
is due to the complex nature and large amad redundancy withithe neuremusculeskeletal
system. Due téheseredundancies, movement tasks can be completed in a multitude of different
combinations. In sport, compensatory variability can be seen in elite athletes who are able to
exploit the mawg degrees of freedoto their advantagéavids et al., 2003Y0n the contray, less
skilled athletes tend to firmly fix the degrees of freedom and will show as much or more variability
than the elites. The variability seen by less skilled athletes is not functional and is due to weak

adaptatios to task constraintéDavids et al., 2003)

Exploring movement pattern variability can also discover unique,vithgilistic
differences in movement techniqué&/hen looking at javelin throwers at the World Athletic
Championships, it was seen that each finalist adopted a unique technique to throw the javelin
(Morriss et al., 1997)It is thought that the diffrencesn i ndi vi dual s6 techniq
individualspecific seHorganization processes. Due the diffeeimtechnique, it is thought that
individual training programs should be perfo

techniqugMorriss et al., 1997)

Using movement pattern recognition techniques, individual, cuséaltraining programs
can be developed tbuild better trainingprogramsby r epl i cating the i ndi

7



Whole-body pattern recognition techniques coaldo help researchers to better understand the
compensatory mechanisms used by athletes and to detect if there are differences in movement

patterns between athlstef different skill levels andports.

2.2Movement Screens

Movement screens are used to assessh | et esd movement patterns
They can be used telpdetermine deficiencias stability, powerandflexibility. Three @mmon
movement screens are then€tionalmovement sreen, the vertical drop jump, and sintgg
balance taskHowever, these three movement screens are subjective tests. Clinicians or raters
give a quantitative score based subjective grading criteria. €he are no quantitative measures
or cut offs used to assess the mati@ters follow subjective guidelineglsut are free to perceive
motions on their ownlin addition, the differences in movement patterns need to be large enough

to be detected by the human eye.

2.2.1 Functional Movement Screen

The functional movement screen ( FAMSWA) ( Fun
USA) is a subjective screening tool that is used to evaluate movement quality. The screen is
comprised of seven tests that test both mobility and stahilitii one of the tests being the bird
dog test The tests are designed to put the partittipa extreme positions where, if present,
weaknesses and imbalances can be detected. Each test is scored based by the ratguainta four
scale (03), providinga final score out of 21. Although the scoring system is based on subjective
measures, previs research has found that there is high 4rdral inter repeatability amongst

both novice and expert level ratéhinick etal., 2010; Teyhen et al., 2012)

Withint he | i terature, there are conflicting r

predict injury.Some researchers fouhdh at at hl etes and military ca



significantly higher risk of injty than those who score >1€horba et al., 2010; Kiesel et al.,

2007; Sorenson, 2009However, otheresearchers Wwa shown that there is no significant
relationship between F(MGSH etslg 2062 Soremsond200®ines k o f
study found that i f f,¢theyavkrea asgoifcantydncréddedrisloafi t h e

injury, but mal es (Kmapketslg20i5pd O14 were not

One concerning factor, however, is that it was recently fokadif the participants were
made aware of the grading criteria, within minutes they were able to significantly improve their
FMSE s(rostetal., 2015 This | eads to the question of

reflective of Adysfunctiond and how much i s r ¢

2.2.2 Drop Jump Tests

The drop jump test consist an athlete jumping down from a box onto the floor and then
immediately transitioning into a maximum vertical jump. At the first landing of the jump, the
athlete has to absorb the impact of dnepin order to transition into the jumphe test is often
used to identifydeficiencies in knee stabilitlinicians and researchers focusabduction and
flexion of the knees, internal rotation and flexion of the hapd thekinetic motion patterns
throughout the jumgGriffin, 2006; Hewett, 2005)Differences in kinetics during a vertical
jumping taskhave also beeexamined between sports. Volleybathyérs had slower time profiles
and lower jump heights compared to basepbdlers, wherdootball and basketbalplayer's
profiles and jump heights were-between(Guillaume et al., 2014)This is thought to be due to
the nature of the sports. Atibigh football and baseball do megjuire a lot of jumping during play,
they require short, explosive muscular actions such as pitching, sprorttagkling. On the other

hand, volleyball and basketball have to require more time optimization of their jumps during play



in order to be at the highest point to attack the(lillaume et al., 2014Pn this basis, the drop

jump could be expected to reveal movement pat

2.2.3 SingleLeg Balance Tests

Performance on singleg balance tests, likbe T-balance, may exploit experience related
differencesA previous study looking at singleg balance of national and regional level soccer
players, found that the national level soccer players had a swetlgeof pressure surface area
and centre of pressure velocity (increase postural control) compared to the regional players
(Paillard et al., 2006)Similary, elite golfers had superior balance with both eyes open and eyes
closed compared to ¢ir less proficient counterpar(Sell et al., 2007)It is suggested that the
superior postural control of elite athletes is due to repetiti@ming that influencesnotor
responses and improvethe athlé¢ e 6 s ability to attend to pr o
neuromuscular coordination, strength, and range of md¢Boessel et al., 2007; Glofcheskie,

2015; Hrysomallis, 2010)

Performance on single leg balance tasks may also exploitrepetetd differences between
athletes.When looking at balance between athletes who compediferent sports, previous
research found that soccer players had superior postural control duringegdy@mamic balance
tasks compared to basketball play@eessel et al., 2007; Hrysomallis, 2010his is thought to
be due to the fact that soccer players often support their body mass on one foot while kicking the
ball (Hrysomallis, 201Q)The T-balance task may help demonstrate differences in wiolg
motion variability between elite and recreational athletes, asaselifference between athletes

competing in different sports.
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2.3Movement Pattern Recognition Techniques

Quantitative methods may provide coaches and athletes with better ways to objectively
characterize motion patterns. With advancement in motion cagettiiaology increasedccess
to motion capturdaboratories and the reduction in costs of motion capture systenwion
capturehasbecome a viable method to collect data. Motion capture systems are able to provide
3D motiontrajectoriedor the entirébody, although, in order to capture the whobtely movement,
outputs are generally quite larg€herefore, analytical techniques need to incorporate data
reduction as part of the analysis. However, in order tanganingful results, the data ndede

ale to be nterpretedafterthey havebeen reduced.

2.3.1 Principle Component Analysis (PCA)

The use of PCA for motion analysis, enabling the extraction of fundamental patterns of
coordination of complex movement, has dramatically incregéédi and Williams, 2010)PCA
is a multivariate statistical technique, which aims to reduce-tiiglensional data set$he goal
of PCA is to provide an objective tool to identigd rankdifferencedased on amount of variance
explained within a data sethus is able to reduce data. The P@cessidentifies principal
components, with the first component accounting for the largest possible variance and each
following component descending wariance under the constraints of the preceding components
(Abdi and Williams, 201Q)If there are redundancies in the data, a subset of the data will explain
the majorityof the variancéTroje, 2002) for example, the first four principal components may

account for 98% of the variance.

Each principal component is also associated with a score; the score is a weighting factor
for the principal componenthe motion data can be modeled with fewer parameters based on the

following equation:
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where Rt) is themodekd motion, o is thetime-series mean posturg» is the i principal

component, and;gis the score associatéd the principal componeiitroje, 2002) The higher

the sum of the explained variance, the enaccurate the replicated data will be.

2.3.1.1PCA-Based Movement Pattern Recognition Technique

It is thoughtthat complex movements can likely be characterized by a subpattern
dynamics that emergBue to the complexity of sport movements, previous rekdaas used PCA
to identify movementfeaturesthat contribute the greatest amount of variance to specific
movementgFederolf et al., 2014; Troje, 2002; Young and Reinkensmeyer, 20 R1JA-driven
movement recognition techniquimss been used to recreate movement pattéuansg walking

(Troje, 2002)diving (Young and Reinkensmeyer, 2058d skiing(Federolf et al., 2014)

The techniquédnas been effectively used detect and explaidifferencesin gait patterns
based a the participants age, sex, and feelings (happy/sad, nervous/re(@raid) 2002) to
objectively analyze skiingethnique(Federolf et al., 2014)xrd to develop an objective judging
tool for competitive divindYoung and Reinkensmeyer, 201%ihe PCAbased movement pattern
recognition technigque was the first dai@ven method to decompose and analyze the complex,
whole-body movement of a ski€Federolf et al., 2014)An obvious benefit of this technique, is
its ability to provide objective biomechanical feedback to coachesadhletes to use when
planning the training of athlet@Sederolf et al., 2014However, a less obvious, secondary benefit
of the technique iIis that It can be used to su
to assess an a(ddéraftecad,s2014)Tthe ECAbased snovement pattern
recognitiontechnique also allowed researchers to characterize movement features during diving,

where dive scores could be calculated based on how a given feature pattern related to the mean

12



(Young and Reinkensmeyer, 2014 he technique has been able to provide researchers, coaches,
and judges a method to objectively assess and score movement patterhsted performing

different movement skills.

The technique is able to detect objective differences in movement patterns, however,
certain considerations need to be taken into account when using the tecArpqasible concern
outlined by Federolf et al2014) was possible differences in results when expressing data to
different reference systems. Federolf et al. (2014) predicted that changing the reference system
may result in changing what each PC represérisrefore, which coordinateystemthe data
should be referenced to needs to be further exanimaddition, PCA is able to detect differences
based on how the athlete is positioned relative to the global space, which is not always beneficial
information. Another prospective concern is whethenairthe technique is able to distinguish
differences in athletes in nanyclical, constrained movements. For the purpose of this thesis, a
constrained movement is defined as movement that has set beginning, middle and end tasks that

need to be accomplished

2.5Purpose

Currently, movement screens are used as a method to ale¢ecinimovement patterns
A major limitation with the three aforementionedovementscreens is that they are commonly
evaluated subjectively wher e the scor e ehaesl.&iace dtere are rfioe y e
guantitative measures or cut offs used to assess the pratiers follow subjective guidelines, but
are free to perceive motions on their o@ne wg to objectivelyquantifymovement ighrough
theuse of motion captureMotion capture systems can record whiotgly motionata much finer
level of detail and accuracy than done by a human obs@tegderolf et al., 2014However, the

comprehensive motion data are usually quite large and difficult to interpret on their own. As such,
13



they may be reduced by chamxizing the motions of specific joints of interest, or by applying

other data reduction methods, such as PCA.

PCAexists as a viable method that could permit more objective assessments for movement
screens. However, based on noted challenges in predsearch, adopting this methodology to
movement screening requires exploration into certain methodological fattorsddition,
consistent with dynamic systems theory, unique patterns of movement emerge due to sport,
environment, and experience. Howeuerthe best of the auth@knowledge, there has been no
previous research that examines objective differences in voole movement patterns during
movement screens between athletes of different skill levels and Eperefore, this study will
explorethe feasibility of adopting this method to movement screening through a series of case

studies

The purpose of case 1 is to assess the influence of a global versus local coordinate system
on the interpretability of movement patterns characterized usiAg REnoted by Federolf et al.
(2014), if an appropriate reference system is not chosen, then the principal components may be
harder to analyze and interpret than principal components from a more appropriate reference
frame By exploring this effect, we Wigenerate evidence to help determine which reference

system is most appropriate for a given situation.

The purpose of case 2 is to assess the influence of a moving versus a stationary local
coordinate system. Global coordinate systems cannot alwayseble therefore, this case will
explore whether a moving or a stationary local reference systerare intuitively interpretable.

By exploring this effect, we will generate evidence to help determine whether a moving or a

stationary reference systaaaimole appropriate for given situations.
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The purpose of case 3 is to asse$ether PCA an detect differences in movement
patterns between athletes of varying skill level during-cymiical, constrained tasks. It was
hypothesized, based on previous resedhdt, there would be differences in movement patterns
between recreational and elite athlgi@®fcheskie, 2015; Hrysomallis, 2010; Paillandd Noé,

2006)

The purpose of case 4 is to assess whether PCA could detect differences in movement
patterns between athletes competing in different sports duringyutioal, constrained tasks. It
was hypothesized that there would be differences legtveghletes of different sports. It was
hypothesized that golfers would have superior postural control of the trunk during tiuodird
task (Glofcheskie, 2015and soccer players would have superior postural control duringthe T

balancegBressel et al2007)

15



Chapter 3
General Methodology

This thesis, reporting on a secondary data analysis was made pbgsidtgus Global
LLC (Massapequa, NY, USAMotus Global uses motion capture technology and analytical
techniques to provide biomemhicatbasedfeedbackto athletesand coache order toguide
improvanents inperformance andhjury reduction Motion capture data analyzed in this thesis
were obtained by Motus Global as they conducted their proprietary screening process on 542
athletes. Prior to obtaining these datay@ndisclosure agreeme(ppendix A)was signed by all
participating persongnsuring that they doot disclose proprietary protocols, client information,

or raw data from their athletes
3.1 Participants

Motion capture dta wereobtained from 542thletes (Table 1)This sample included
athletescompeing in baseball, basketball, socceplf, tennis, track and field, squash, cricket,
lacrosse, footbalbr volleyball. Prior to data collection, each participant read amphesi an

informed consent forrfAppendix B)permittingMotus Global to uséhe datdor future research.

Table1.At hl et es® me an a @tandarchdeviatiphstare in bracketswe i g ht .

Sex n Age Height (cm) Weight (kg)
Male 479 20.3 (4.50) 185.29 (19.39) 86.08 (22.25)
Female 63 18.97 (5.68) 167.96 (8.86) 61.14 (13.30)
Total 542 20.2(4.67) 183.3 (19.28) 83.1 (22.85)

3.2How the Data wereGenerated

To provide context fohow the motion capture data weralected, the following section

summarizes thetandard protocol implemented by Motus Gloldhon arrival at the Motus
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laboratory, participants read and signieeconsent form. Once the consent form was signed, the
participants had their height (with shoes on) and weight measndethen describedll previous
injuriesthat caused missed playing time (missed playing time considered as two or more missed
training days) in the past 10 yedAppendix C) The collected information included: place of
injury, diagnosis of injury, date of injury, surgicat nornsurgical, and amount of time missed

beforereturning toplay.

The participants were then outfitted withpassive, reflective marke{8&L Engineering,
Santa Ana, CA, USAYo capture wholbody kinematic data. 37 markers wegrkaced on
anatomicalandmarks to define the head, trunk, upper arms, forearms, pelvis, thighs, shanks and
feet(Appendix D) Eightmarkers were used as tracking marKere marker placed on each thigh,
each forearm, each bicep, the right shank, and the right scaputessis with tracking the
segments and also to identify the left lifliom the right. After the athlete was outfitted with all
of the markers(s)heperformel a calibration trial (Figure)lin order to zero movement to the
standing positionDuring thecalibraton trial, the athlete stood with their feet shoulder width apart
and toes pointing straight forwarthearms were abducted 90°, with a 90° bend in the elbow. The

athlete then rotatelis or herarms 90° both internally and externally.

The athletethen canpleted a proprietary movement screenipagtery. The drogump,
bird-dog and Thalance tests were included in that battery, where motion data from those three
activities were analyzed in this thesiBhe selected tests were chodanorder to maximize
examination of motion and stabilityt &he shoulder, spine, hiknee, and ankldzull-body motion
data werecaptured using an8amera RapteE (Motion Analysis, Santa Rosa, CA, USA) motion

capture system.
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Figure 1. Calibration trial

3.2.1 Bird-Dog Test

The birddog test (also known astary stability) is a common spine stabilizing exercise
used in yoga and rehabilitation therapy that emphasizes core strength, trunk stability and balance
(McGill and Karpowicz, 2009)The athletébegins in a crawling position with one aand the
contralateral lege.g. left arm and right legdxtendeduntil they areparallel with the floor at their
trunk height(Figure 2A. The athlete then draws the elbow andekn&those respective limbs in
towards the transverse midline sotttieey are touching (Figure 2Bhd then retumback to the

extendedgosition(Figure 2G. The test is performed on both sides.

Figure 2.Bird-Dog Test.
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3.2.2 T-Balance Test

The T-balance testhallengesknee, hip trunk stability and postural controlAt hl et e 6 s
begin bystanding on one leg with the opposite hip and knee flex@d° and the hands in a prayer
position atipple line (Figure 3A). This position is ldefor three seconds. In one fluid motion, the
athlete hinge at the hipextending the hip and kndaringing the trunk parallel to the floor, while
extending both of arms out to 96f abductionat the shoulder, creating ashapewith the arms
and the trunk. The athletetatesforward as far as posséylwhile maintainingbalance. Once
reaching the Jposition(Figure 3B) the athlete thereturns tothe starting positiotiFigure 3C)

The test is performed on both the left and right foot.

F'_’B—i motus

Figure4. Drop Jumprest
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3.2.3 Drop Jump

The drop jump test is commonly used in research lmidal settings to detect deficiencies in
knee stabilityHewett, 2005) The athletdegins bystandng on a box 30 cm tall (Figuré\J. The
paricipant thendropsdown off of the boxonto the floor (Figure B) thenimmediately jumps

upwardsaiming for maximum vertical height (FigureG).

3.3 Data Analysis

3.3.1 Pre-Processing

Prior to implementing the PGhAased method, motion data were inspected, labessd
to model jointcentres, and clipped to respective trial start and end featuresoMcapture data
were collected and labelled using Cortex (Motion Analysis, Santa Rosa, CA, D&A)irom the
anatomical landmarks and the tracking markersng the calibration trial wereised to develop a
3D, wholebodykinematic modein Visual3D (GMotion, Inc., Germantown, MD, USAFigure
5; Appendix B. The model was then applied to all motion tr@algputtingjoint centrepositional
databilaterally forthe wrist, elbow, shoulderfoot, ankle, knee, and hiprn addition centreof
gravity positional datavere outputtedfor the trunk, head, and pelvikastly, marker positional
raw data for the left and right heel, T2, T8, sternum, and the back, front asdsitie head were
extractedo modelthe feet, trunk and head more rolygEigure 5. Data were then exported to
Matlab (The MathWorkd\atick, MA, USA). All trialswereclipped to specific start and epaint
criteria(Appendix F)and time normalizedt100 frameso control for differences in the absolute

time taken to complete each movement
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Figure5. A) Visual3D model with all anatomical landmark markd3¥ Matlab model made |
calculating: joint centers of tiHeet,ankle, knee, hip, shoulder, elbow, and wrist; center of g
position for the trunk, pelvignd head; and, marker positional data of the right and left he
T8, sternum, and the back, front, and sides of the. head

3.3.2 Application of PCA as MovemenPattern RecognitionTechnique

A principal component analysfPCA)based movement pattern recognition techniqise
done byTroje (2002) was used to analyze the data.t€bleniqueconsisted ofunning two PCAs.
The first PCA wa within the subject and outputtélde principal components and corresponding
scores for the variability within the movente The second PCA comparedriability across

subjects.
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3.3.2.1First Principal Component Analysis

A 78 x 101 matrix wasreatedor each athletéor each task.The x,y and z positions for
each calculated jointentre centreof gravity, and marker position data (26cktion x 3 axes)

conprised ther8 variables. Each variable was timermalized to 100, resulting in 101 points.

A principal component analysis wapplied to the movement data corresponding to each
individual movement performance and a trace criterion of 90% was afpéethe sum of the
explained variance of the retained eigenpostures had to be greater thaA8@%gsult, the PCA
generatedour eigenvectorsherein referred to asgenpostures (Figurg @matrix was a [4 x 78]),
the reference posture (the average yresthroughout the movement) (matrix was a [1 x 78]) and
the scores (one for each time point) associated with each eigenpositnig (was a [4 x 101])
(Figure 7 were extracted for each athleTde eigenpostures are the principal component postures
(eigenvectors), which are arranged in their order of explained variance (eigenvalues). The principal
component scorePC scores), explain how each eigenposture varies over the course of the

movement. The movement was then able to be recreated using:

0 B0 oY 0°%Y 0°%Y 0, (1)

where MecreatediS the recreated movementerenceis the reference posture;-fPare the four

eigenpostures and.pare the scores thateaassociatewith the eigenpostures (Figurg 8
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Figure6. Fourrepresentativeigenposturefor one subject during the drop jump test.
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Figure7. Four representatesscores associated with tdeop jump teseigenpostures across tir
Eigenposturgfscore, + reference posture at n gives you the recreated motion at.frame
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Figure8. A) The original positional data for the drop jump test for one subject B) The ractige
motion data for the drop jump test for one subject using the equation: reference pc
eigenposture 1*score 1 + eigenposture 2*score 2 + eigenposture 3*score 3 + eigenpostul
4,

3.3.2.2Second Principle Component Analysis

In order to perform the second principal component a second matrix was created for each
individual movement s i ng each parti ci pantrésandrsareseross n c e
the columns where each row described the PCA data for each participaatefore, the matrix
that was used for the second PCA was [n x 794], where n was the number of athgikting
that motion and included in the analysissome instances, certaathletes did notperform every
task andn some cases marker occlusion and other data collection errors required that some trials
be removed. Thereforeach task had a unique number of athleteslzer@fiore matrices size\
secand PCA wasapplied to the principal components and scores. Each participant has an
individual score corresponding with each principal component. The scores describe the amount
each part i {odpmoreménsdewatesffom the meBoe to the sizefahe dataset
and in order to robustly investigate tREA-driven pattern recognition technigas a proof of

principle, a casstudy approach was used for the theBmur cases were created, with the first
24



two cases geared towards methodological concenm$ the lasttwo cases looking at
implementation othe PCA-driven pattern recognition technigu&hapters 4 will go through the

specific methods, results and discussion pertaining to each case.
3.3.2.3Interpretation

For a traditionaPCA, loading vectors cahe used to interpret results. However, for the
PCA tedinique used in the current thessince the second PCA is being applied on a reference
posture, four principal components, and the scores associated with each of the four principal
components, interpting what each PC represents from the loading curve is not intuitive or easily
identifiable. Therefore, single component reconstruction (§BRNdon et al., 2013yas used to

confirm which aspect of the movement each principal compaepresents

For each princidacomponent, a mean movement, a 4se@oring movement and a high
scoring movement was recreat@tie mean movemenélculated by averaging thedata across all
of the athletes. The 5" percentile movement (lowcoring) was recreated by5™" Percentile
Movement = Meammovement+ (PG, * 5" percentilescorg). And, the95" percentilemovement
(high-scoring) was recreated byd5" Percentile Movement = Mean Movement(PG, * 95
percentilescore). Videos and fyures were made with the mean, low, and {sgbring movements
overlaid in order to see side by side comparisémshe videosand figuresprovidedin chapters
4-7, the blue avatar is the motion reconstructed from the mean score. The red avatar répeesents
motion of an athlete that had a score in th& ércentile (higkscoring) and the black avatar is

the reconstructed motion of an athlete that had a score iff' {heréentile (lowscoring).
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Chapter 4
Case 1: Local vs. GlobaReferenceSystem

4 1 Introduction

The purpose of case 1 is to assess the influence of a global versus local coordinate system
on the interpretability of movement patterns characterized using PCA. As noted by Federolf et al.
(2014), if an appropriate reference system is noseh, then the principal components may be
harder to analyze and interpret than principal components from a more appropriate reference
system. By exploring this effect, we will generate evidence to help determine which reference

system is most appropridi@ a given situation.

4.2 CaseSpecific Methods

The number of participants as well as the average age, height and weight for both the bird
dog right and tbp jump tasks can be found imfile 2.Three reference systems were examined,
two local (pelvis andight shank) anthe globakeferencesystemVisual3D was used to calculate
data relative to theentreof mass of the right shank, thentreof mass of the pelvis and the global
reference system and then all data were egddd MatLab for further atgses. The pelvis was
chosen as it is the segment that is closest to the midpoint of the body. The shank was chosen since
it has easily identifiable anatomical bony landmarks, and thus is less likely to have researcher error
due to misplacement of marke@ualitative comparisons were made between the three conditions
(global reference system, pelvis reference system, and shank reference ssstgmyisual
inspection In order to look at a task with and without displacement, the-dagd right (no
displa@ment) and the drop jump (displacemeaak were examinedlhe birddog right task

refers to the birdlog task in which the right arm and left leg are exten@edly the first 7 PCs
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were examined for this case. The percentage of explained varianceftaslaand each referamn

system used can be found iable 3.

Table 2. The mean and standard deviations of age, height and weight by sport fa-tioey
and T-balance tasks

n Age Height (cm) Weight (kg)
Bird -Dog Right 388 20.5 (4.3) 183.9 (21.0) 83.7 (23.4)
Drop Jump 280 20.5 (4.5) 183.4 (17.0) 85.2 (24.3)

Table 3. The percent of variance explained by @aicitipal component for data relative to tl
pelvis, shank, and global reference systems fordhoiglright and drop jump tasks. Total is t
sum of the first 7 PCs.

Task Ref.Sys. PC1 PC2 PC3 PC4 PC5 PC6 PC7 Total

Pelvis 86.71 3.89 1.78 096 0.83 0.67 0.54 95.38

Bird-Dog Right Shank 26.78 17.51 10.36 5.11 4.28 4.01 256 70.61
Global 79.25 485 292 217 15 111 0.89 092.69

Pelvis 61.31 3453 092 083 063 0.32 0.27 98.81

Drop-Jump Shank 96.3 146 05 032 0.25 0.15 0.14 099.18
Global 39.13 32,65 1188 7.31 196 123 1.1 9526

4 .3Results

Manipulating the frame of reference between a global (lab) reference system, the local right
shank coordinate system, or a local pelvis coordinate system, affecistehpretation of the

principal components.
4.3.1 Bird-Dog Right

Analysis of thebird-dogtask allowed exploration into how alternate frames of reference
can influence the interpretation of resulting principal components dummglke-body movement
tak. During the birddog right, although the right arm and left leg are moving, the right knee and

left hand are firmly planted on the ground throughout the task. When comparing tdedpiight
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task for PC 1 between the globpélvis, and shankoordinaé systems (Videos B; Figure 911,
respectively), few differences can be seen regarding the movement of the task. From all three
videos, PC 1 can be interpreted as the range of motion the elbow and knee move through during
the task As can be seen in thedeos and figures (Video-3; Figure9-11), notice that the black

avatar (low score) achieves more extension of the arm and leg at the beginning and end of the task
and more flexion towards the midline during the middle of the task compared to theatad av
(high score). Therefore, PC 1 was interpreted as the amount of extension and flexion achieved
throughout the taskdowever, with the global coordinate system, the avatars are not all facing the
same direction (Video 1; Figu®. The mean (blue) antie highscoring (red) avatars are parallel

with each other, while the loscoring (black) is perpendicular to the other two avatars. These
resultsdemonstrate that consistent alignment of athletes within the lab space is important when
expressing data rdlae to the global coordinate systerxpressing data relative to a local,
stationary coordinate system may overcome limitations due to positional misalignment with

respect to the global lab space.

Figure9. Single component reconstruction of th&@®d), 5¢" (blue) and & (black) percentile
score for PC 1 for the birdog right movemenwvheredatawere expressed relative to thebal
coordinate systenieft: 0% of mawement (start), middle: 50% of movement, right: 100%
movement (end).
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Figure D. Single component reconstruction of theé"9Bed), 5¢" (blue) and % (black)
percentile score for PC 1 fdne birddog right movementvheredatawere expressed relativ
to thelocal coordinate system of the pelvieft: 0% of movement (start), middle: 50%
movement, right: 100% of movement (end).

Figure 11 Single component reconstruction of theé"9Bed), 5¢" (blue) and % (black)
percentile score for PC 1 for the bildg right movement with the dataerpressed relate to
the local coordinate system of the shab&ft: 0% of movement (start), middle: 50%
movement, right: 100% of movement (end).

For PC 2, when motianwere expressed relatiie the dobal and pelvis coordinate
systems, the movemeniasseen in the videavere not as intuitive to interpret as the reconstructed
motions did not seem to resemble features of thedomgimovemen(Video 4-5; Figure 1213,
respectively). As can be seertlire vides and figuregVideo 4-5; Figure 1213), the avatars start
to move the elbow towards the knee, however the movement is minimal and the elbow and knee
are not close to touching in tleentre Because there is minimal movement, it is difficult to
interpret what the principal component refers to. For the global coordinate system, comparable to
PC 1, not all the avatars are facing the same direction, again suggesting that not all athletes
performed the task in the same position relative to the globaddinate systemWhen the
coordinate system is referenced around the shank for PC 2, in the starting position, the leg and arm
are fully extended, the right elbow and left knee are then brought together at the midline and then

are fully exended again.Mideo 6; Figure 1% The full range of motion expected to been
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throughouthetask is being exhibited. Thereforesing motiordata expressed relative to thight

shank coordinate system, PC 2 was interpreted as a relative speed of movement featur

“ :‘i li" N \ | .’1 lI l \ ‘ .'i /’ .1' \
Figure 12 Single component reconstruction of theé"9Bed), 5¢" (blue) and % (black)
percentile score for PC 2 for the biudg right movementvheredatawere expressed relativ

to theglobal coordinate systerbeft: 0% of movement (start), middle: 50% of movement, rig
100% of movement (end).

SO O

Figure 13 Single component reconstruction of theé"9Bed), 5¢" (blue) and % (black)
percentile score for PC 2 for the budg right movementvheredatawere expressed relativ
to the local coordinate system of the pelvieft: 0% of movement (start), middle: 50%
movement, right: 100% of movement (end).

Figure 14 Single component reconstruction of theé"9Bed) 50" (blue) and % (black)

percentile score for PC 2 for the biudg right movementvheredatawere expressed relativ
to thelocal coordinate system of the shah&ft: 0% of movement (start), middleft: 25% of

movement, middle: 50% of the movemeantddle-right: 75% of the movement, right: 100%
movement (end).

4.3.2 Drop Jump

Analysis of the drop jump task allowed exploration into how alternate frames of reference
can influence the interpretation of resulting principal components duvilgle-body movement
task. When motiowasexpressed relativie the dobal referencaystem, data reconstrudtasing

PC 1 (Video 7; Figure )5vasinterpreted asertical motion or jump heightiump heightis an
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outcomeoften onlymadewhen datarein reference to the global system. However, when motion

was expressed refave to the right shank or pelvis local coordinate systems, PCs become more
challenging to interpretvideo 89 and Figure 147 showthe drop jump motion reconstructed

from PC 1 consideringhotiondataexpressed relativio the pelvs and right shank, rpsctively

This is likely a result of the underlying motion of the selected reference frames. In this case, the

use of local (internal) reference systems challenged the ability to interpret PCs that explained the
greatest amount of variability in the datiwever, similar to results found with the boldg task,

when the motion was expressed relativeh® global coordinate system, later P@&&lé€o 10;

Figure 18 data reconstructed from PC 7) highlight differenices t he at hl et esd or i
the dobal system during data collectiobhis can be seen by the horizontal offset of the avatars in

the initial pose.

£
A

Figure 15 Single component reconstruction of theé"9Bed), 5¢" (blue) and % (black)

percentile score for PC 1 for the dfppymp movement with the daexpressed relativio the

global coordinate systemLeft: 0% of movement (start), middle: 50% of movement, ric
100% of movement (end).

Figure B. Single component reconstrumii of the 98 (red), 5¢" (blue) and % (black)

percentile score for PC 1 for the dfpymp movement with the daexpressed relativio the

local coordinate system of the pelligft: 0% of movement (start), middle: 50% of moveme
right: 100% of movment (end).
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Figure T7. Single component reconstruction of theé"9Bed), 5¢" (blue) and % (black)

percentile score for PC 1 for the dfpymp movement with the daexpressed relativio the

local coordinatsystem of the shank.eft: 0% of movement (start), middle: 50% of moveme
right: 100% of movement (end).

Figure B. Single component reconstruction of theé"9Bed), 5¢" (blue) and % (black)

percentile score for PC 7 for the dfipmmp movement with the datxpressed relativio the

global coordinate systenbeft: 0% of movement (start), nude: 50% of movement, right
100% of movement (end).

4 .4 Discussion

The purpose ofasel was to examine the differences between usitaral(pelvisor right
shank) versus globalreference system. Changing the reference system from a local to a global
coordinate system affected the ability to interpret PCs. In order tmtgepretableresults, the
motion data reconstructed from eded should be somewhantuitive to permit interpretidon
using single component reconstructidime globakeferencesystem is the ideakferencesystem
to use because it provides information regarding how athletes are moving relatisestbframe
of referenceAs can be seen in PC 1 of the drop jurtips is important for tasksvhere the

overarching movement objective is expressed relative to the global coordinate systleras
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maximizing thevertical or horizontatlistance duringumping. However, when using the global
reference system, the analyisisensitive to how subjects are positioned relative to the origin. This
can be seen in PC 1 and 2 of the bird dog and PC 7 of the dropwimare those PCs likely
explain positional differences of the athletes rather than movement variance. Thevagne,
expressing motion data relative tgybal coordinate system imperative that participants be
oriented consistentlgelative to the origirof the global spaceéilthough this may be feasible in a
laboratory setting, inaybecome increasingly morefficult when testing subjects in the field or

a mobile laboratory. If the same relative position cannot be achieved for each athlete, either a
virtual coordinate system can be made using external landifteellerolf et al., 2014)uch as

the box being used for the drop jump, @tationarylocal coordinate system can be used, such as

the right shank.
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Chapter 5
Case 2: Moving vs. Stationary LocaReferenceSystem
5.1 Introduction

The purpose of case 2 is to assess the influence of a moving versus a stationary local
referene system. As discussed in the previous chapter, there are instances gibieal reference
systemcannot always be used, such as, when participants do not perform the task in the same
position relative to the global reference system. Therefore, thisvilhegplore whether a moving
or a stationary local reference system is more appropriate for given situatmnaker to be able

to provide evidencbased recommendations for choosing local reference systems.

5.2 CaseSpecific Methodology

The number oparticipants and the mean age, height, and wéigletach task can be found
in Table 4.For this case study, the right shank was used as the reference 3ist&at8D was
used to calculate the data relative to ¢katre of mass of theght shank and #n all data were
exported to MatLab for further analysishe birddog and Thalance tasks were performed on both
the left and the right sidé qualitative comparison was made between the left and rightibiyd
trial and a second comparison was made betvthe left and right-bBalance trial in regards to the
right shank using visual inspection. During the right doiody andright T-balance trials, the right
shank is stationary, whereas during the leftoiog andleft T-balance trial, the right shank is
moving.Only the first 7 PCs were examined for this case. The percentage of explained variance

for each task and each refecersystem used can be found able 5.
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Table 4. The mean and standard deviations of age, height and weight by sport for-tog &
and T-balance tasks

n Age Height (cm) Weight (kg)

Bird -Dog Right 388 20.5 (4.3) 183.9 (21.0) 83.7 (23.4)
Bird -Dog Left 384 20.5 (4.4) 183.8 (21.3) 84.0 (24.0)
T-Balance Right 395 20.4 (4.3) 183.7 (21.1) 84.1 (24.0)
T-Balance Left 395 20.4 (4.3) 183.4 (20.3) 84.1 (23.8)

Table 5. The percent of variance explained by each principal component for toedpiathd
T-balance tasks. Total is the sum of the first 7 PCs.

PC1 PC2 PC3 PC4 PC5 PC6 PC7 Total

Bird-Dog Right 26.78 17.51 10.36 5.11 4.28 4.01 256 70.61
Bird-Dog Left 81.79 551 253 205 132 0.96 0.74 94.9
T-Balance Right 31.98 2052 6.88 59 537 325 257 76.47
T-Balance Left 26.07 17.21 10.15 7.2 6.28 4.07 3.22 74.2
5.3 Results

5.31 Bird-Dog

As mentioned in Chapter BC 1 br the rightbird dogwas interpreteés arange of motion
feature pertaining tthe left knee andght elbow (Video 3Figure 1) and PC 2vas interpreted
as a relativespeedof movementeature(Video 6; Figure 11 The avatady smovementsappear to

bereflective of the biresdog motion profile

Whenexaminingthe birddog left, PC Ican be interpreted as a range of motion feature,
similarly to PC1 of the birdlogright (Video 11; Figure 1P Higher scoresvere observed in those
usingless range of motiotihroughout the task. Since the referesgstem isexpressed relativi®
the right shank, when reconstructeg default the right shardppears to not move (even though
it is moving during the task). Although aspects of the task can be detected idethesvich as the
elbow and the knee touching and then extending back outwards again, the avatar does not visually

mimic what the athletes looked like during the testking this PC less intuitive to interpréor

35



PC 2, it becomes difficult to interprethat the differences are between the three avatars in terms
of the birddog movement (Video 12, Figure R@ne can see that the black avatar has the greater
vertical displacemermompared to the red and blue avatars, however, it is difficuiteégoret what

that means with respect to their overarching movement performance

Figure 19 Single component reconstruction of theé"9Bed), 5¢" (blue) and % (black)
percentile score for PC 1 for the budg left movement with the data in reference to the Ic
coordinate system of the shankeft: 0% of movement (start), middle: 50% of moveme

right: 100% of movement (end).

Figure 20 Single component reconstruction of theé"9Bed), 5¢" (blue) and ¥ (black)
percentile score for PC 2 for the budg left mvement with the data in reference to the lo
coordinate system of the shankeft: 0% of movement (start), middle: 50% of moveme

right: 100% of movement (end).

5.32 T-Balance

For the Fbalance right, PC Was interpreted as a hiprward rotationfeature(Video 13,
Figure 2). Lower scoregerformed the motion witlgreater forward rotatig whereas higher

scoregerformed the motion withkess forward rotation. This can be seen as the ljlaskscore)
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avataro6s trunk and | eft | eg apesimoiren®acarmparn
otherred (high score) and blue (averagpore)avatar PC2 refers to the amount of flexion and

extension of the knee, hip, shoulder, and elbow performed though out the task (Video 14; Figure

22). The lower the score, the more range of motion through flexion and extension of the knee, hip,
shouder, and elbow occurs. In the beginning frames, the black avatar can be seen to have its thigh
segment above the other two avataros thigh sec
The Dblack avataro6s hands oawe tahe ootcheorsetrwa oa\
suggesting greater el bow and shoul ¢gersiftliexidégn
can be seen that the black avatardéds | eg i s hi
its arms are more penpaicular to the trunk. This suggests greater extensitredtip, knee, and

shoulder joints. Similar to the birdog right the movements performed by teatar mimics the

movement performed by the athletes during the tegkinginterpretation more initive.

For the Fbalance left, similar to the-Bbalance right, PC 1 wasterpreted ashe amount
of forward rotation abut the hip (Video 15; Figure 23n the video, the black avatar can be seen
to have its trunk and right leg more parallel to the gdbcompared to the red and blue avatar. For
PC 2, the avatars appear to have similar postures during the séadiegding position anghen
| aid oWpobshntt badod ( Vi.daveverlilte black avatar neaehe® each position
first, suggesng that PC 2 refers to the speed of the movement. Comparable to what was seen with
the birddog left, the Thalance left does not imitate the movement that was performed by the
athletes during the test. Although components of the task, such as thegtarpp o s i t-i on, t
positiond, and the final tpeomsvermentd nelatvatoa rélatives e e n

reference system instead of a fixed reference system.
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Figure 2.. Single component reconstruction of theé"9Bed), 5¢" (blue) and % (black)

percentile score for PC 1 for thebRlance right movement with the datgpressedelativeto

the local coordinate system of the shankeft: 0% of movement (start), middle: 50%
movement, riaht: 100% of movement (end).

Figure 2. Single component reconstruction of thé"9Bed), 5¢" (blue) and % (black)

percentile score for PC 2 for thebRlance right movement with the datgpressed relativio

the local coordinate system of the shankeft: 0% of movement (start), middle: 50%
movement, right: 100% of movement (end).

Figure 3. Single component reconsttion of the 94 (red), 5¢" (blue) and % (black)
percentile score for PC 1 for thebBlance left movement with the dataexpressed relative ti
the local coordinate system of the sharkeft: 0% of movement (start), middle: 50%
movement, right: 10% of movement (end).
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Figure 2. Single component reconstruction of theé"9Bed), 5¢" (blue) and % (black)
percentile score for PCfar the T-balance left movement with the data in reference to the |
coordinate system of the sharkeft: 0% of movement (start), middleft: 25% of movement,
middle: 50% of the movement, midelight: 75% of the movement, right: 100% of movem:
(end).

5.4 Discussion

The purpose otase 2 was texplorethe differencesn results between using the local
reference system of a stationary versus a moving segment. When the right shank was stationary
throughout the task, P@suld be intuitivelyinterpreted for both the birdog and the Ibalance
task. However, similar toase 1when thereference coordinate systemas moving throughout
the task, the PCwere less intuitive tanterpret. This is due to the right shank being the origin.
Since the right shank is stationary during the-biogj right taskthe reconstructed data appaa
be that of absolute motion. Whereas, during the-tbrg left task, the shank is moving and
therefore, the reconstructed motion appears to be that of relative nbtismg a local coordinate
system, a stationary segment with easily identifiableydandmarks should be used in order to be
able to accurately interpret the PCs. If all segments are moving throughout the task, a virtual, local
coordinate system can be used. In a study that examined downhill racing skiing technique, a local
coordinatesystem was constructed at the midpoint between the twdFdkerolf et al., 2014)

This allowed for the coordinate system to move along with the skier downhill, but also remain

relatively stationary in respect to the skier.
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