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Two-Dimensional Axis Mapping Using LiDAR
Marc J. Gallant and Joshua A. Marshall, Senior Member, IEEE

Abstract—This paper introduces two-dimensional axis map-
ping, which estimates axis maps (AMs) based on LiDAR measure-
ments. An AM describes the dominant orientations of surfaces
in an environment, and is void of positional information. As
a consequence of the directional nature of the map, there
are significant differences compared to traditional mapping
algorithms. Experimental results are presented from simulated,
indoor, outdoor, and underground environments. One major
application of AMs is for heading estimation. An example of this
application is shown to effectively bound the growth of heading
error in both an indoor and an outdoor environment.
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I. INTRODUCTION

THIS paper introduces two-dimensional axis mapping
(2DAM), which is a new algorithm that maps the dom-

inant axes present in an environment. In two dimensions,
axes are used to represent the orientations of flat surfaces in
the environment, and are parameterized as angles invariant to
rotations of π. An axis map (AM) is a set of axes and is
completely void of positional information. Unlike most map
representations, the relationship between the environment and
the entries of an AM is not injective. Put differently, the axes of
many distinct physical surfaces (e.g., walls, cars, a fence, etc.)
may be represented by the same entry in an AM. As a result,
AMs are extremely compact, even for large environments. In
fact, for semi-structured environments, an AM with only two
entries may sufficiently describe all dominant axes.

Robotic mapping is a broad area of research that has many
practical applications. One application for two-dimensional
AMs is as part of a vehicle or robot heading estimation
algorithm. By representing large environments by a succinct
set of angles, a LiDAR compass (i.e., a lightweight real-time
heading estimation algorithm that extracts axes from LiDAR
scans; see Section V) can be used to bound the growth of
heading errors. This paper demonstrates that suitable AMs can
be estimated in a variety of indoor, outdoor, and underground
environments, making a LiDAR compass a feasible substitute
for a gyroscope, compass, or even scan matching.

Three-dimensional AMs also have practical applications. For
example, in geotechnical engineering such maps are called
stereonets and are used to identify structural features [1]
and support stability analysis [2]. An automated and remote
approach to axis mapping could greatly improve the efficiency,
safety, and coverage of stereonets.

2DAM is analogous to pose-graph simultaneous localization
and mapping (SLAM) constrained to the sample space of
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directional random variables (see Section II-A). The goal is
to optimize a heading-graph, whose nodes represent headings
of the robot at distinct points of its trajectory, and whose edges
represent the negative log-likelihood of observed rotations
between nodes. The absence of positional information in
AMs and the directional nature of the state produces some
significant departures from the well-studied nonlinear least-
squares approach to SLAM [3], [4].

In particular, this paper develops the following facets unique
to axis mapping: (i) axis extraction from 2D LiDAR scans
(Section II-D); (ii) criteria for deciding when to add new
nodes without positional information (Section III-A); (iii) data
association and in a densely-connected graph with directional
data (Section III-B); (iv) optimization of the heading-graph
without violating the sample space of directional random
variables (Section III-D). The main contribution of this paper
is the development and testing of algorithms to efficiently and
effectively meet these challenges, resulting in two-dimensional
axis maps suitable for robotic mapping applications (e.g., use
by a LiDAR compass).

A. Organization of this Paper
This section concludes with a survey of related work in

Section I-B. Next, Section II provides background information
on axes, directions, and extracting axes from LiDAR scans.
Section III presents the algorithms that comprise 2DAM, and
how they differ from traditional pose-graph SLAM. Finally,
Section IV presents experimental results in a variety of envi-
ronments and Section V demonstrates an application of AMs:
heading estimation using a LiDAR compass.

B. Related Work
At its core, 2DAM is a least-squares optimization problem

in the sample space of directional random variables [5]. Due to
the prevalence of directional data in natural phenomena (e.g.,
migratory directions of animals, orientation of rock masses in
geology, time of day/month/year), there is existing work on
regression analysis with directional observations.

One of the first to develop a regression analysis that
specifically accounts for directional data was Gould [6], who
developed a technique to model the spatial orientation of vec-
torcardiograms (i.e., the electric activity of the heart). Gould
modelled a vector of linear covariates x (i.e., independent
variables) as the mean µ+β>x of a von Mises distribution [5],
and solved for the maximum-likelihood estimate of the vector
of parameters β. This approach yields an infinite number of
solutions (which Gould addressed with heuristics), and was
later improved [7], [8] by wrapping β>x to the unit circle.
A regression technique where the independent variables x are
also directional random variables was developed by Sarma and
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Jammalamadaka [9]. Here, the real and imaginary components
of a directional observation eiθ = cos(θ) + i sin(θ) are each
modelled as a finite Fourier series (given an angular covariate
α). The Fourier coefficients are then determined to maximize
the likelihood of all the observations. Lund [10] later developed
a similar approach that considers the case of a combination
of both linear and angular covariates. Although developed for
directional random variables, these regression techniques do
not address the case where the parameters being determined
(e.g., β) are themselves directional random variables (which
is the case for 2DAM, presented in this paper).

Until very recently, directional random variables in mobile
robot state estimation were most commonly assumed to be
locally Gaussian. State spaces containing these variables (e.g.,
the orientation of a robot) are modelled as a manifold, and
operations (such as the error between an observation and the
model) are calculated on a local tangent plane. This approach
is described in detail by Hertzberg et al. [11]. The error
introduced by this approximation is negligible if the variance
of the directional variables is sufficiently small. 2DAM is
based partly on the manifold least-squares approach described
by Hertzberg et al., with the crucial difference that the error
function has a constant Jacobian. As a result, the optimal so-
lution can be determined without numerically approximating a
Jacobian or using an iterative nonlinear least squares algorithm.

Recent work has relaxed the Gaussian assumption on direc-
tional random variables by using distributions well defined on
the circle. Azmani et al. [12] introduced a recursive filter using
the von Mises distribution; however, a linear observation model
is required. A recursive algorithm for nonlinear observations
based on deterministic sampling was developed by Kurz et
al. [13]. However, unlike 2DAM, these algorithms are all
recursive filters (i.e., observations are considered sequentially,
not simultaneously), have no data association component, and
have only been tested in simulation.

Finally, the Linear Approximation for Pose-Graph Optimiza-
tion (LAGO) algorithm by Carlone et al. [14], [15] involves
solving the heading-graph of a two-dimensional trajectory, as
is done in 2DAM. LAGO is subdivided into two independent
quadratic optimization problems: first, the orientations are
optimized (with special treatment given to the angle wrapping
problem), and second, the solved orientations are used to
optimize the positions. However, unlike LAGO, we approach
this problem at both the front-end (graph construction) and
back-end (graph optimization). LAGO receives as its input
the constructed graph, which means that data association,
loop closure detection, sensor fusion, etc., have already been
performed. However, if the goal is to solve only for orienta-
tions, the graph can be augmented with heading loop closures.
For example, consider two similarly-oriented yet physically
distinct surfaces in the environment. If this similarity can be
detected, an association can be made between the orientations
of two nodes whose relative position is well outside the range
of the LiDAR. This can result in a densely-connected graph
even if the robot never returns to previous locations. Also,
to be able to perform data association among axes for the
full trajectory (dead-reckoning alone would make detecting
heading loop closures difficult), 2DAM constructs the heading-

graph incrementally, optimizing each time a node is added.
Consequently, this gives the optimization algorithm an initial
guess, resulting in a different back-end as compared to LAGO.

II. PRELIMINARIES

2DAM makes extensive use of axial and directional random
variables, which are defined in Section II-A. Definitions of
axis maps, axis observations, and the state are provided in
Section II-C, and the algorithm that extracts axes from LiDAR
scans is detailed in Section II-D.

A. Axial and Directional Random Variables
An entry of an axis map is an axial random variable and

the heading of a robot is a directional random variable. This
nomenclature taken from directional statistics [5].

Definition 1. A random variable Φ is called an axial random
variable if its sample space is [0, π).

Definition 2. A random variable Θ is called a directional
random variable if its sample space is [−π, π).

Neither Φ nor Θ can be exactly represented by a Gaus-
sian distribution because of their bounded sample spaces.
An appropriate distribution for axial and directional random
variables is the wrapped normal (WN) distribution [5], denoted
WN(θ, σ2), which has the probability density function (PDF)

fWN (x; θ, σ2) :=
1

σ
√

2π

∞∑
k=−∞

exp

[
−(x− θ + nπk)2

2σ2

]
.

(1)
For axial random variables, n = 1, x ∈ [0, π), and θ ∈ [0, π),
and for directional random variables, n = 2, x ∈ [−π, π), and
θ ∈ [−π, π). In both cases, σ ∈ R. Note how the WN PDF is
simply an infinite series of Gaussian PDFs fN (x; θ−nπk, σ2).
As a result, for the same range, the probability enclosed by a
WN distribution within some distance from the mean (e.g.,
3σ) is larger than that of a Gaussian distribution in the same
interval. In practice, 3σ � π

2 for axial random variables and
3σ � π for directional random variables in 2DAM. As a result,
the vast majority of the probability density is well-represented
by the first (k = 0) term of a WN distribution.

Assumption 1. The axial and directional random variables
used in this paper are reasonably approximated by Gaussian
distributions, such that 3σ � π

2 and 3σ � π, respectively.

B. Linear Combinations of Directional Random Variables
Let X ∼ N(x, σ2

x) and Y ∼ N(y, σ2
y) be independent

Gaussian random variables. If Z = X+Y , then Z ∼ N(z, σ2
z),

where z = x+y and σ2
z = σ2

x+σ2
y . However, by Definition 2,

when X and Y are directional random variables being approx-
imated by Gaussian distributions it must be that z ∈ [−π, π),
which is not guaranteed (e.g., consider x = π and y = π).
Additionally, we require 3σz � π by Assumption 1.

Definition 2 is satisfied by mapping a linear combination
of directional random variables back to [−π, π). Let θ =

[θ1 . . . θn]
>, where θi is the mean of an axial or directional
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random variable, and let a ∈ Rn such that a>θ+β is a linear
combination of the entries of θ offset by β ∈ R. This result
is wrapped to [−π, π) by the function fd : R→ [−π, π); i.e.,

fd(a
>θ + β) = atan2

(
sin
(
a>θ + β

)
, cos

(
a>θ + β

))
. (2)

Proposition 1. For all a>θ + β, the Jacobian f of fd(a>θ)
with respect to θ exists and is simply f = a>.

Proof: Using the chain rule, the total derivative of fd is

dfd(a
>θ + β)

dθ
=

∂fd(a
>θ + β)

∂ cos (a>θ + β)

d cos
(
a>θ + β

)
dθ

+

∂fd(a
>θ + β)

∂ sin (a>θ + β)

d sin
(
a>θ + β

)
dθ

= sin2
(
a>θ + β

) (
a>
)

+

cos2
(
a>θ + β

) (
a>
)

= a>

Jacobians of the form a> are needed for data association
and to add nodes to or optimize the heading-graph.

C. Axis Maps, Axis Observations, and the State
Axis maps (AMs) represent the axes of surfaces in an

environment expressed in the inertial coordinate frame. Let an
axis map Φ be an m-dimensional axial random variable with
Φ ∼ N(φ,M). Axis observations are the result of transform-
ing LiDAR scans into observations of the axes present in the
environment, expressed in the robot coordinate frame. Let an
axis observation Z be a p-dimensional axial random variable
with Z ∼ N(z,R), where z :=

[
z(1) . . . z(p)

]>
and

R := diag
(
σ2
z(1)

, . . . , σ2
z(p)

)
. Note that surfaces with similar

axes (e.g., parallel walls) are represented by one axis in Z.
The state represents robot headings at a particular points

along its trajectory, expressed in the inertial coordinate frame.
Let the state Θ be an n-dimensional directional random
variable with Θ ∼ N(θ,P), where θ := [θ1 . . . θn]

>.
The goal of 2DAM is to find the optimal state mean vector
θ∗ that maximizes the likelihood of all axis observations and
gyroscope measurements. The optimal AM is then produced
by rotating the axis observations at each entry in the state to
the inertial coordinate frame.

D. Axis Extraction
Axis extraction is the process of transforming a two-

dimensional LiDAR scan into an axis observation. The algo-
rithm consists of the following steps:

(i) outliers are filtered from the LiDAR data based on large
range differences compared to neighbouring points;

(ii) the axis of each individual point is calculated by fitting
a line to its n nearest neighbours (typically n = 6 to 12)
using a simple Deming regression [16], which is a linear
regression that accounts for uncertainty in both variables;

(iii) points with highly uncertain axes (e.g., points near cor-
ners) are discarded;

(iv) the axes of all the remaining points are clustered using
DBSCAN [17], which clusters only dense concentrations

of similarly-oriented axes of points (ignoring outliers and
sparse orientations);

(v) the circular mean [5] and variance of each cluster are
calculated, and clusters with a variance below a threshold
(typically 3σz(j) � π

2 , to coincide with Assumption 1)
are returned.

The clustering of similarly-oriented point axes into a single
axis is illustrated under the Axis Extraction block of Fig. 1.

III. TWO-DIMENSIONAL AXIS MAPPING

Two-dimensional axis mapping (2DAM) is a new algorithm
used to determine the dominant orientations of an environment.
It is accomplished by optimizing a heading-graph, whose
nodes are headings and whose edges represent the negative
log-likelihood of rotations derived from axis observations or
gyroscope measurements. An overview of the 2DAM algo-
rithm is provided in Fig. 1. The following subsections describe
the details behind each of the blocks in this figure. The
algorithm differs in many ways from pose-graph SLAM; these
differences are highlighted throughout the text.

A. Adding New Nodes to the Heading-Graph
A gyroscope can be used to estimate the rotation between

sequential nodes in the heading-graph. Gyroscope measure-
ments are integrated to produce the directional random variable
∆Θ ∼ N(δθ, σ2

δθ). An initial estimate of the mean heading
of the new node is calculated by using the motion model
g : R→ [−π, π); i.e.,

g(θ, δθ) = fd(θn + δθ). (3)

The covariance matrix P must also be augmented to include
the new node. By Proposition 1, the Jacobian g> of g with
respect to θ is [01 02 . . . 1n]. The new state mean vector
and covariance matrix are then

θ ← [θ1 . . . θn g(θ, δθ)]
>
,

P←
[

P Pg
g>P g>Pg + σ2

δθ

]
.

(4)

This augmentation of the state is illustrated under the Add New
Node block in Fig. 1.

The decision to add a new node in pose-graph SLAM is
commonly triggered once the estimated change in position
or orientation of the robot exceeds a threshold (e.g., 0.5 m
or 0.5 rad, respectively) [3]. This ensures there is sufficient
overlap in observations between sequential nodes. However,
due to the lack of positional information, triggering new nodes
is less straightforward for heading-graphs. As a result, a new
node is triggered if any of the following conditions are met:

(i) δθ is greater than a threshold (typically 10◦–25◦);
(ii) σ2

δθ is greater than a threshold (to meet Assumption 1);
(iii) A timeout occurs (typically 5–25 s) and the circular mean

of all point axes has changed by a threshold (typically
8◦–15◦)

These three conditions (illustrated under the New Node Trig-
gered block in Fig. 1) ensure that nodes are added less fre-
quently in areas with constant axes (e.g., corridors), and more
frequently while the robot is rotating.
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Fig. 1. Overview of the 2DAM algorithm. A gyroscope is integrated until a new node is triggered. A new node is added to the heading-graph using the
gyroscope integration (Section III-A), at which point the axes of the environment are extracted from a LiDAR scan (Section II-D). The extracted axes are
associated with the axes of all the other nodes (Section III-B), and successful associations are transformed into new edges in the heading-graph (Section III-C).
The graph is then optimized before a new node is added (Section III-D).

�1

�2

A

B

Fig. 2. The rotation ambiguity between axes A and B. Because axes are
invariant to rotations of ±π, axis A can be aligned with axis B through the
equivalent rotations β1 and β2. If β1 is always taken as the smaller absolute
angle, then β1 ∈ [−π

2
, π
2
) and β2 ∈ [π

2
, 3π

2
).

B. Data Association

Data association uses the joint compatibility branch and
bound (JCBB) algorithm [18] to associate axis observations
between nodes. JCBB finds the largest jointly compatible
injective subset of correspondences between axis observations.
However, data association using heading-graphs has two im-
portant differences compared to pose-graphs. First, correspon-
dence checks cannot be restricted to nearby nodes because
axis observations are not injective. Put differently, two physical
surfaces in the environment that are positioned far apart are
considered the same “landmark” (in the pose-graph sense) if
they share a similar axis. Second, calculating the Mahalanobis
distance between axis observations requires an additional step
to resolve the ±π rotation ambiguity (illustrated in Fig. 2).

This section describes how the Mahalanobis distance be-
tween to axis observations is calculated. This method is then
used to perform the full JCBB algorithm. Let z(a)

i and z
(b)
j

be the a-th and b-th mean axis observations at the i-th and
j-th nodes, respectively. The error υ(a,b)

i,j ∈ [−π2 ,
π
2 ) between

these two observations is calculated by first rotating them to
the inertial frame, and then selecting the smaller of the two
rotations between them (see Fig. 2); i.e.,

υ
(a,b)
i,j = fd

(
(z

(b)
j + θj)− (z

(a)
i + θi)

)
, (5)

where υ
(a,b)
i,j ←− fd

(
υ

(a,b)
i,j + π

)
if (5) yields υ

(a,b)
i,j /∈

[−π2 ,
π
2 ). The variance of the error σ2

υ
(a,b)
i,j

is

σ2

υ
(a,b)
i,j

= σ2

z
(a)
i

+ σ2

z
(b)
j

+ v>i,jPvi,j , (6)

where by Proposition 1, the Jacobian v>i,j of υ
(a,b)
i,j with

respect to θ is v>i,j = [01 . . . −1i . . . 1j . . . 0n]. The
Mahalanobis distance m(a,b)

i,j ∈ R+ is then

m
(a,b)
i,j =

√√√√√
(
υ

(a,b)
i,j

)2

σ2

υ
(a,b)
i,j

. (7)

When a new node is added to the heading-graph, the
Mahalanobis distance is calculated between its axis observa-
tions and the axis observations of all the other nodes. Note
that the relatively small number of axis observations at each
node (typically 2–4 observations) makes this computationally
tractable. JCBB then produces a set of correspondences be-
tween the nodes, which are stored in a compatibility matrix
C. The illustration under the Data Association block in Fig. 1
highlights associations with axis observations of the new node.

C. Adding New Edges

An edge in the heading-graph represents the negative log-
likelihood of an observed rotation between the nodes it con-
nects. Let an observed rotation Ri,j from the i-th node to
the j-th node be a directional random variable with Ri,j ∼
N(ri,j , σ

2
ri,j ). There are two sources of observed rotations

between nodes: gyroscope measurements and associated axis
observations in C. Observed rotations from gyroscope mea-
surements occur between sequential nodes and have the form

r
(δθ)
i,j = δθ, σ2

r
(δθ)
i,j

= σ2
δθ. (8)

There is also an observed rotation for each association in
C. Let an entry of C be the a-th and b-th axis observations
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of the i-th and j-th nodes, respectively; then

r
(a,b)
i,j =

fd
(
z

(b)
i − z

(a)
j

)
, if υ(a,b)

i,j ∈ [−π2 ,
π
2 )

fd

(
z

(b)
i − z

(a)
j + π

)
, otherwise.

(9)

σ2

r
(a,b)
i,j

= σ2

z
(a)
i

+ σ2

z
(b)
j

. (10)

These two cases are necessary to resolve the ambiguity illus-
trated in Fig. 2.

The error e(k)
i,j (θ) ∈ [−π, π) of the k-th observed rotation

between the i-th and j-th node is

e
(k)
i,j (θ) = fd

(
r

(k)
i,j − hi,j(θ)

)
, (11)

where hi,j : R→ [−π, π) is the predicted rotation

hi,j(θ) = fd(θj − θi). (12)

Let E = {(i, j, k)1, . . . , (i, j, k)e}, where (i, j, k) represents
the k-th observed rotation between the i-th and j-th node. The
negative log-likelihood `(k)

i,j of an edge in E is then

`
(k)
i,j =

(
e

(k)
i,j (θ)

)2

σ2

r
(k)
i,j

. (13)

The illustration beside the Add New Edges block in Fig. 1
shows new edges added to the heading-graph based on newly
associated axes in C.

D. Optimizing the Heading-Graph

The heading-graph is optimized each time a new node is
added. This consists of finding the optimal state mean vector
θ∗ that minimizes the sum of the negative log-likelihood of
all of the observed rotations between nodes; i.e.,

θ∗ = argmin
θ

∑
(i,j,k)∈E

`
(k)
i,j . (14)

Because Θ is a vector of directional random variables, θ∗

cannot be determined directly (e.g., if r(k)
i,j = 2◦, one must

consider the possibility that θj = −179◦ and θi = 179◦).
Different methods for solving nonlinear least squares problems
have been extensively explored for pose-graphs; e.g., Gauss-
Newton [19], stochastic gradient descent [20], and Levenberg-
Marquardt [21]. These methods approximate e(k)

i,j (θ) by a first-
order Taylor series expansion and iteratively solve for the
optimal perturbation to the state until convergence. However,
unlike pose-graph SLAM, the perturbed state is exactly repre-
sented by its first-order Taylor series expansion, resulting in a
closed-form solution to the optimization problem.

Proposition 2. Given an initial estimate θ̄ of the state mean,
the negative log-likelihood `(k)

i,j of each edge in E is quadratic
with respect to a perturbation δθ of the state mean.

Proof: The Taylor-series expansion of e(k)
i,j evaluated at

the initial guess θ̄ is

e
(k)
i,j (θ̄ + δθ) = e

(k)
i,j

∣∣∣∣
θ̄

+

(
∂e

(k)
i,j

∂θ

∣∣∣∣
θ̄

)
δθ +

1

2
δθ>

(
∂2e

(k)
i,j

∂θ2

∣∣∣∣
θ̄

)
δθ + ...

(15)

By Proposition 1, the partial derivatives are

∂e
(k)
i,j

∂θ

∣∣∣∣
θ̄

= [01 . . . 1i . . . −1j . . . 0n]

= e>i,j

∂me
(k)
i,j

∂θm

∣∣∣∣
θ̄

= 0> for m ≥ 2.

(16)

Substituting (15) into (13) yields

`
(k)
i,j =

(
e

(k)
i,j + e>i,jδθ

)2

σ2

r
(k)
i,j

. (17)

Substituting (17) into (14) transforms the optimization prob-
lem into the minimization of a quadratic function; i.e.,

δθ∗ = argmin
δθ

∑
(i,j,k)∈E

(
e

(k)
i,j + e>i,jδθ

)2

σ2

r
(k)
i,j

, (18)

where the optimal state mean vector θ∗ is calculated by
perturbing the initial estimate by the optimal perturbation δθ∗;
i.e., θ∗ = fd

(
θ̄ + δθ∗

)
. In this case, the wrapping function

fd is applied separately to each entry of its argument. The
standard gradient-vector minimization technique is used to
solve (18), yielding

δθ∗ =

 ∑
(i,j,k)∈E

ei,je
>
i,j

σ2

r
(k)
i,j

−1 ∑
(i,j,k)∈E

e
(k)
i,j

σ2

r
(k)
i,j

ei,j . (19)

Optimization by perturbation is illustrated beside the Optimize
Heading-Graph block in Fig. 1. By performing the optimiza-
tion each time a new node is added, excessive dead-reckoning
error is avoided that could cause erroneous associations be-
tween axes extracted at older and newer nodes.

E. Generating Axis Maps

An axis map is produced by rotating the axis observations at
each node in the heading-graph to the inertial coordinate frame.
Rotating the a-th axis extracted at the i-th node produces the
AM entry φ(a)

i ∈ [0, π) by

φ
(a)
i =

θi + z
(a)
i , if

(
θi + z

(a)
i

)
∈ [0, π)

1
2fd

(
2θi + 2z

(a)
i

)
, otherwise.

(20)
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IV. EXPERIMENTAL RESULTS

The 2DAM algorithm was tested using data collected from
four distinct environments: (i) in simulation using a randomly
generated jagged wall; (ii) indoors at Beamish-Munro Hall, a
building at Queen’s University; (iii) outdoors on the Queen’s
University campus; (iv) underground in a mining drift at the
NORCAT Underground Centre. This section discusses the
effectiveness of 2DAM in these environments.

A. Simulation
A simulator was constructed to test 2DAM in challenging

environments, such as the jagged wall in Fig. 3a. It also allows
testing in environments where the angle of a dominant axis
varies among different surfaces, which is a better represen-
tation of naturally occurring surfaces (e.g., rock). The simu-
lated LiDAR was modelled as a Hokuyo URG-04LX (same
range, resolution, noise, and frequency), and the gyroscope
was modelled with noise comparable to a Microstrain 3DM-
GX3-25 IMU. The simulated robot was driven at 0.5 m/s
while following the shape of the wall, which was randomly
constructed using the algorithm described in Fig. 4. The wall
illustrated in Fig. 3a consists of 200 segments, of which 169
were drawn from a eight-entry AM, and 31 are random
axes drawn from [0, π). The resulting distributions of the
non-outliers are illustrated in Fig. 3c. The estimated state,
unclustered AM, and clustered AM resulting from 2DAM are
shown in Figs. 3b, 3d, and 3e, respectively.

The error bars in Fig. 3b represent the 3σ uncertainty of
the estimated heading at each node, which encompasses the
ground truth (dashed line) at every node. Despite the absence
of loop closures (in the SLAM sense), the uncertainty is evenly
distributed among the nodes. In other words, unlike pose-
graph SLAM, heading loop closures routinely occur upon re-
observation of similarly oriented surfaces, regardless of their
relative position. This creates a dense heading-graph whose
Hessian matrix does not contain the distinctive “arrowhead”
structure of pose-graph SLAM. The highly-interconnected
heading-graph reduces the likelihood of a string of “weakly”
connected nodes that are attached to an un-looped graph via
relatively few edges. However, one downside is the inability
to use sparse methods to invert the Hessian matrix.

It is clear by comparing Figs. 3c and 3e that the estimated
AM is an accurate representation of axes in the simulated wall.
In general, the estimated axes tended to have a similar means
with slightly inflated uncertainties. This inflation comes from
two sources: the inherent uncertainty introduced by the noisy
LiDAR and gyroscope, and the occurrence of outliers close
enough to the true axes to be included by the clustering algo-
rithm. Some of these outliers are visible in Fig. 3d, especially
around the cluster near 60◦.

B. Beamish-Munro Hall
Data was collected on the ground floor of Beamish-Munro

Hall (BMH), a building at Queen’s University (Kingston, ON,
Canada). A blueprint of the test area is shown in Fig. 5a. A
Clearpath Robotics Husky A200 mobile robot was equipped

with a SICK LMS111 2D laser scanner (field of view of 270◦,
resolution 0.5◦, range 20 m) oriented to scan in the horizontal
plane, and a Microstrain 3DM-GX3-25 IMU, used solely for
one of its gyroscopes. At the time of the experiments, the
environment had a considerable amount of pedestrian traffic.

The robot was driven at speeds varying from 0.1–1.0 m/s
approximately along the path in Fig. 5a. AMs generated with
2DAM are illustrated in Figs. 5b and 5c, respectively. The
mean axes of the dominant surfaces were estimated to be
(shown with standard deviations) φ = (0.7±3.4◦, 90.1±2.8◦),
which is quite similar to the expected AM of φ = (0◦, 90◦)
obtained by observing the blueprint in Fig. 5a.

Comparing Figs. 5b and 5c reveals that two smaller clusters
appear to be joined together, increasing their uncertainty. It was
determined that part of the environment with gradually curved
surfaces momentarily caused incorrect data associations, lead-
ing to the addition of false edges to the heading-graph. This
demonstrates a weakness of using DBSCAN: small changes
of the axes of individual points along a curved surface tend to
be clustered together, even if the maximum circular distance
between two points in the cluster is quite large.

Although the path of the robot was approximately 130 m in
length, the heading-graph consisted of only 46 nodes (a mean
distance of 2.8 m between nodes). As expected based on the
new node triggers described in Section III-A, relatively few
nodes were added in long corridors compared to areas where
the geometry of the environment required substantial heading
changes or the axes of surfaces rapidly changed.

C. Queen’s University Campus
Data was collected by driving a Taylor-Dunn SS-534 electric

vehicle outdoors around Queen’s University campus, along the
1.3 km route illustrated in Fig. 6b. The vehicle (pictured in
Fig. 6a) was equipped with the same LiDAR and IMU used
in the BMH experiments. The environment contained many
trees, buildings, cars, pedestrians, and gardens. An additional
experiment was performed using a magnetometer for heading
estimation to compare with 2DAM in an outdoor environment.

The AM illustrated in Fig. 6c shows a greater variety of
extracted axes compared to the indoor data at BMH. The axes
in the less dense parts of the AM are primarily attributed
to two sources: environmental anomalies (e.g., exterior walls
of buildings, the sides of parked cars, infrastructure around
pathways, all which had flat surfaces at a variety of angles)
and false positive axis extractions (i.e., a sufficiently large
number of points from different parts of the LiDAR scan
having similar axes and being clustered together). Although
the environmental anomalies are expected (and should) appear
in the AM, one way to reduce false positive axis extractions
could be to cluster points based on both their axes and relative
positions. Despite the ideal conditions for magnetometer-based
heading estimation, the AM it generated (Fig. 6e) was much
less precise than its 2DAM counterpart.

Despite the variety of extracted axes, Fig. 6d shows that
two dense clusters at φ = (1.3 ± 2.5◦, 91.9 ± 2.6◦) could be
extracted. Based on the orientation of the buildings in Fig. 6b,
a reasonable expected AM is φ = (0◦, 90◦). Once again, areas
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Fig. 3. Simulation results. (a) Simulated wall generated by the algorithm in Fig. 4. The robot (blue rectangle) is shown with a simulated LiDAR. (b) Estimated
heading (with 3σ error bars) at each node, with the ground truth indicated by a dashed line. (c) Ground truth AM (with 3σ uncertainty) of the axes of the wall
segments that are not outliers. (d) Unclustered AM. (e) AM (with 3σ uncertainty) generated by clustering the axes in (d).

Require: N , Lmin, Lmax, (µ1 ± σ1, . . . , µM ± σM ), Pout
while # lines < N do
L = sample_uniform(Lmin, Lmax)
Choose axis or outlier based on Pout
if axis then

Choose µ± σ from (µ1 ± σ1, . . . , µM ± σM )
θ = sample_gaussian(µ, σ) mod π

else
θ = sample_uniform(0, π)

end if
Append line (L, θ) to end of previous line

end while
Find sample distributions from lines generated by (µi, σi)

Fig. 4. Pseudocode for the algorithm used to generate the simulated wall
in Fig. 3. The number of lines was N = 200, the minimum and maximum
line lengths were Lmin = 0.4 m and Lmax = 1.0 m, respectively, and the
percentage of outliers was Pout = 20. The resulting eight sample distributions
(shown in Fig. 3c) were (0.9◦ ± 1.1◦, 22.2◦ ± 1.2◦, 46.1◦ ± 1.2◦, 67.1◦ ±
0.9◦, 91.1◦ ± 0.9◦, 113.1◦ ± 1.4◦, 134.0◦ ± 1.4◦, 157.1◦ ± 1.1◦).

with constant-axis surfaces and straight pathways resulted in a
sparse heading-graph, this time averaging nearly 12 m between
nodes. Unlike pose-graph SLAM, this distance is permitted
because overlap between LiDAR scans is unnecessary. Note
that relaxing the minimum number of axes in a cluster in
Fig. 6c introduces another “dominant” surface at approximately
45◦. It is speculated that chamfered corners on some buildings
contributed to this cluster.
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Fig. 5. Results of the Beamish-Munro Hall experiments. (a) Blueprint of
the ground floor (roughly 35 m × 55 m) with a dashed line indicating the
approximate path of the robot. (b) AM generated by 2DAM. (c) AM in (b) after
applying DBSCAN. The width of the wedges correspond to 3σ uncertainty.

D. NORCAT Underground Centre

The simulation results in Section IV-A showed that 2DAM
can be applied to less structured environments with inherent
uncertainty in the AM entries. One such environment is
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Fig. 6. Results of the Queen’s campus experiments. (a) Electric vehicle
used to collect data. (b) Satellite imagery of part of the campus ( c©2014
DigitalGlobe), showing the dashed path driven by the vehicle. (c) AM
generated by 2DAM. (d) AM in (c) after applying DBSCAN. The width of the
wedges correspond to 3σ uncertainty. (e) AM generated using a magnetometer.

underground tunnels, where exposed rock faces provide a
small number of reoccurring surface orientations. Rock masses
have highly anisotropic planes of weakness (or discontinuities)
caused by tectonic activity, heating/cooling events, or sudden
changes in stress. Discontinuities appear as groups of planes (a
joint set) that have similar three-dimensional axes. In general,
a limited number of joint sets (typically < 5) are visible in
a rock face, each distributed in orientation and spacing. Thus,
joint sets should appear as clusters of axes in 2DAM.

The same robot (and sensors) used in the BMH experiments
(see Section IV-B) was driven approximately 50 m in an
underground mine tunnel at the NORCAT Underground Centre
(Onaping, ON, Canada). Although pictured at a different part
of the mine, Fig. 7a shows the robot and the typical structure
of a rock face containing the joint sets. The robot drove over
uneven ground at approximately 0.5 m/s, not necessarily in
a straight line. The AMs of the drift walls are illustrated in
Figs. 7b and 7c.

The clustered AM in Fig. 7c suggests that three different
joint sets were prevalent in the mine drift. Ground truth was
not available for this experiment, and visual inspection of
the rock faces was difficult due to darkness. However, the
goal of detecting distinguishable joint sets was successful.
It is conceivable that a LiDAR compass (Section V) could
be used in an underground mine, especially if the entries
in the clustered AM could be expressed in the coordinate
system of the mine. However, as discussed in Section I, the
true value of this experiment is as a feasibility study for
mobile 3D axis mapping. 3D axis maps of geological surfaces
(called stereonets) provide measurable properties from which
engineering or geological information can be inferred.
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Fig. 7. Results of the NORCAT Underground Centre experiments. (a) Robot
operating in the underground mine. Note the structure of the rock face on the
right. (b) Unclustered AM, showing that axes extracted from the rock face are
not uniformly distributed but rather form clusters around the joint set axes.
(c) AM formed by clustering the axes in (b).

V. APPLICATION: LIDAR COMPASS

A LiDAR compass (LC) is a heading estimation algorithm
that uses LiDAR and an a priori AM. Not unlike a compass or
sun sensor, absolute heading information (with respect to the
initial heading) can be inferred by observing entries in an AM.
When paired with a sensor capable of accurately measuring
translation (e.g., wheel encoders), an LC can be used to aid
localization. Using an LC in this way is meant as an extremely
lightweight alternative to more complex algorithms (e.g., scan
matching), suitable for computationally-constrained platforms
and also to provide initial pose estimates for mapping algo-
rithms (e.g., pose-graph SLAM). A preliminary form of an LC
[22] showed its effectiveness in a warehouse environment.

The steps below describe the implementation of a LiDAR
compass as part of a localization algorithm; specifically, how
the pose of a robot is updated given an a priori AM Φ, an axis
observation Z (see Section II-C), and an estimate of the change
in position ∆d ∈ R and in heading ∆θ ∈ [−π, π) reported by
wheel encoders. The state Θ = (x, y, θ, Φ̂) consists of the pose
of the robot (x, y, θ) ∈

(
R2 × [−π, π)

)
and a local AM Φ̂. The

entries of Φ̂ consist of axes in the environment that are locally
present but not in Φ. Entries are added to and removed from
Φ̂ based on how frequently they are observed. The purpose
of Φ̂ is to provide robustness to heading estimation in areas
where the entries of Φ̂ are less frequently observed.

1) Given Θk−1, calculate the a priori estimate Θ−k by
passing ∆d and ∆θ through the (nonlinear) motion model
using an unscented transformation.

2) Perform data association among the axes in Φ and Z.
3) Calculate the a posteriori estimate Θ+

k using the correc-
tion step of a Kalman filter. The observation model is
simply ẑ = fd(φ − θ), where φ is an entry of Φ. The
innovation is simply fd(z− ẑ), where z is an entry of Z.

4) Perform data association among the axes in Φ̂ and the
axes in Z that were not associated with Φ.

5) Perform a second correction step to calculate a new a
posteriori estimate Θ+

k using the new associations.
6) Add unassociated axes in Z to Φ̂.
7) Merge similar axes; remove rarely observed axes from Φ̂.
Additional data sets from Beamish-Munro Hall and the
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Fig. 8. The estimated paths of the robot for the BMH data set. The lettered
markers indicate known ground truth positions; the ideal path should pass
through all the markers. The path both started and ended at “A”.

Queen’s University campus were collected to test using AMs
with a LiDAR compass, with the results in Sections IV-B
(Fig. 5c) and IV-C (Fig. 6d) providing the a priori AMs.

A. Beamish-Munro Hall
The robot was localized using wheel encoders and an LC,

gyroscope, or scan matching (using the same setup described in
Section IV-B). An open source implementation [23] of the pop-
ular point-to-line scan matching algorithm by Censi [24] was
used. For the LC, the a priori AM φ = (0.7±3.4◦, 90.1±2.8◦)
illustrated in Fig. 5c was used. Ground truth was calculated at
distinct poses (labelled A through G). The robot was briefly
stopped at ground truth markers to record the poses estimated
by the localization algorithms.

The estimated paths of the robot and the position of the
ground truth markers are shown in Fig. 8. To analyze the
effectiveness of an LC for heading estimation, the heading
errors recorded at each of the ground truth markers are shown
in Fig. 9. It was found that the heading error is bounded
by the LC when given the a priori AM produced in this
paper. However, recall from Section IV-B that the uncertainty
in the AM was increased due to the curved surfaces in the
environment causing clustering issues. Heading estimation by
an LC in these areas was affected by similar issues, causing
the jumps in heading error at markers “D” and “E” in Fig. 9,
although the LC was able to quickly recover.

B. Queen’s University Campus
In addition to the LiDAR and IMU, the vehicle pictured in

Fig. 6a was equipped with US Digital A2 encoders on the drive
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Fig. 9. The gyroscope, scan matching, and LC heading errors in BMH at
the ground truth markers. The 3σ uncertainty includes the uncertainty of the
ground truth (typically < 1◦).

shaft and steering column. A separate trial was performed in
which the vehicle was localized using the encoders and an
LC, gyroscope, or scan matching (same gyroscope and scan
matching algorithm as in the BMH experiments). The LC was
given the a priori AM φ = (1.3±2.5◦, 91.9±2.6◦) shown in
Fig. 6d. A Novatel SPAN-SE-2 GPS receiver and CPT IMU,
alongside commercial Novatel GPS/INS software were used to
estimate the true two-dimensional pose.

The estimated paths of the vehicle and the ground truth
path are shown in Fig. 10, and the heading errors are shown in
Fig. 11. Because the estimated position is tightly coupled with
the heading estimate, dead-reckoning position error growth in
position is significantly arrested when using an LC. Regardless,
position errors were introduced by imperfect encoder calibra-
tion, hills or uneven terrain, and local data association failures.
In some cases, the uncertainty of the LC heading estimate
was not properly represented. For example, the uncertainty
of axis extraction combined with the uncertainty of the AM
entries made data association difficult when surfaces in the
environment were slightly misaligned (e.g., “poorly” parked
cars), as was the case at t = 45 s in Fig. 11. Significant changes
in heading in areas where no extractable axes existed in the
environment also negatively affected heading estimation (e.g.,
at t = 215 s). However, in both these cases, re-observation of
entries in the a priori AM resulted in a quick recovery.

VI. CONCLUSION

This paper introduces axis mapping, which estimates the
axes of dominant surfaces in an environment given noisy Li-
DAR and gyroscope measurements. The problem is formulated
as a large error minimization problem in a fashion similar
to pose-graph SLAM; however, its unique properties (e.g.,
directional random variables, lack of positional information)
merit a specialized solution. The algorithms are described in
detail and were tested in several environments. It was found
that accurate and efficient 2D axis mapping can be achieved in
both structured (e.g., indoors) and unstructured (e.g., a mining
drift) environments. Furthermore, the estimated axis maps
were shown to be useful inputs for heading estimation using
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Fig. 11. The gyroscope, scan matching, and LC heading errors on the Queen’s
University campus. The 3σ uncertainty includes the uncertainty of the ground
truth (typically < 1.5◦).

a LiDAR compass, resulting in bounded growth of heading
errors when used as part of a localization algorithm. Work is
underway to extend axis mapping to 3D, which has application
to the interpretation of rock faces for geotechnical purposes.
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[3] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard, “A tutorial on
graph-based SLAM,” IEEE Intelligent Transportation Systems Maga-
zine, vol. 2, no. 4, pp. 31–43, 2010.

[4] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. Cambridge,
MA, USA: MIT Press, 2006.

[5] K. V. Mardia and P. E. Jupp, Directional Statistics. West Sussex,
England: John Wiley & Sons, Ltd., 2000.

[6] A. L. Gould, “A regression technique for angular variates,” Biometrics,
vol. 25, no. 4, pp. 683–700, Dec. 1969.

[7] R. A. Johnson and T. E. Wehrly, “Some angular-linear distributions
and related regression models,” Journal of the American Statistical
Association, vol. 73, no. 363, pp. 602–606, Sep. 1978.

[8] N. I. Fisher and A. J. Lee, “Regression models for an angular response,”
Biometrics, vol. 48, no. 3, pp. 665–677, Sep. 1992.

[9] Y. R. Sarma and S. R. Jammalamadaka, “Circular regression,” in
Statistical Sciences and Data Analysis: Proceedings of the Third Pacific
Area Statistical Conference, Makuhari, Japan, Dec. 1991, pp. 109–128.

[10] U. Lund, “Least circular distance regression for directional data,”
Journal of Applied Statistics, vol. 26, no. 6, pp. 723–733, 1999.

[11] C. Hertzberg, R. Wagner, U. Frese, and L. Schröder, “Integrating generic
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